Skip to main content

NMR-Based Metabolomics

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a major analytical method used in the growing field of metabolomics. Although NMR is relatively less sensitive than mass spectrometry, this analytical platform has numerous characteristics including its high reproducibility and quantitative abilities, its nonselective and noninvasive nature, and the ability to identify unknown metabolites in complex mixtures and trace the downstream products of isotope labeled substrates ex vivo, in vivo, or in vitro. Metabolomic analysis of highly complex biological mixtures has benefitted from the advances in both NMR data acquisition and analysis methods. Although metabolomics applications span a wide range of disciplines, a majority has focused on understanding, preventing, diagnosing, and managing human diseases. This chapter describes NMR-based methods relevant to the rapidly expanding metabolomics field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dang, N. H., Singla, A. K., Mackay, E. M., et al. (2014). Targeted cancer therapeutics: Biosynthetic and energetic pathways characterized by metabolomics and the interplay with key cancer regulatory factors. Current Pharmaceutical Design, 20, 2637–2647.

    Article  CAS  PubMed  Google Scholar 

  2. Griffin, J. L., Atherton, H., Shockcor, J., et al. (2011). Metabolomics as a tool for cardiac research. Nature Reviews. Cardiology, 8, 630–643.

    Article  CAS  PubMed  Google Scholar 

  3. Lindon, J. C., & Nicholson, J. K. (2014). The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opinion on Drug Metabolism & Toxicology, 10, 915–919.

    Article  CAS  Google Scholar 

  4. Nagana Gowda, G. A., & Raftery, D. (2013). Biomarker discovery and translation in metabolomics. Current Metabolomics, 1, 227–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rhee, E. P., & Gerszten, R. E. (2012). Metabolomics and cardiovascular biomarker discsovery. Clinical Chemistry, 58, 139–147.

    Google Scholar 

  6. Nagana Gowda, G. A., Raftery, D. (2014) Advances in NMR based metabolomics, in fundamentals of advanced Omics technologies: From genes to metabolites, comprehensive analytical chemistry, Eds. Carolina Simo´ Alejandro Cifuentes, Virginia Garcı’a-Can˜ as, Elsvier, New York, 63:187–211.

    Google Scholar 

  7. Nagana Gowda, G. A., & Raftery, D. (2015). Can NMR solve some significant challenges in metabolomics? Journal of Magnetic Resonance, 260, 144–160.

    Article  CAS  PubMed  Google Scholar 

  8. Nagana Gowda, G. A., & Raftery, D. (2017). Recent advances in NMR-based metabolomics. Analytical Chemistry, 89(1), 490–510.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, M., Chatterjee, A., Khedkar, A. P., et al. (2013). Mass spectrometric distinction of in-source and in-solution pyroglutamate and succinimide in proteins: A case study on rhG-CSF. Journal of the American Society for Mass Spectrometry, 24, 202–212.

    Article  CAS  PubMed  Google Scholar 

  10. Nagana Gowda, G. A., Gowda, Y. N., & Raftery, D. (2015). Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Analytical Chemistry, 87(1), 706–715.

    Article  CAS  PubMed  Google Scholar 

  11. Nagana Gowda, G. A., Abell, L., Lee, C. F., Tian, R., & Raftery, D. (2016). Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo (1)H NMR spectroscopy. Analytical Chemistry, 88(9), 4817–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Purwaha, P., Silva, L. P., Hawke, D. H., et al. (2014). An artifact in LC-MS/MS measurement of glutamine and glutamic acid: In-source cyclization to pyroglutamic acid. Analytical Chemistry, 86, 5633–5637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trammell, S. A. J., & Brennera, C. (2013). Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Computational and Structural Biotechnology Journal, 4, e201301012.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beckonert, O., Keun, H. C., Ebbels, T. M., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692–2703.

    Article  CAS  PubMed  Google Scholar 

  15. Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum metabolome. PLoS One, 6(2), e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagana Gowda, G. A., & Raftery, D. (2017). Whole blood metabolomics by 1H NMR spectroscopy provides a new opportunity to evaluate coenzymes and antioxidants. Analytical Chemistry, 89(8), 4620–4627.

    Article  CAS  PubMed  Google Scholar 

  17. Emwas, A. H., Luchinat, C., Turano, P., et al. (2015). Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: A review. Metabolomics, 11(4), 872–894.

    Article  CAS  PubMed  Google Scholar 

  18. Emwas, A. H., Roy, R., McKay, R. T., et al. (2016). Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. Journal of Proteome Research, 15(2), 360–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aimetti, M., Cacciatore, S., Graziano, A., et al. (2012). Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics, 8(3), 465–474.

    Article  CAS  Google Scholar 

  20. Wishart, D. S., Lewis, M. J., Morrissey, J. A., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 871(2), 164–173.

    Article  CAS  PubMed  Google Scholar 

  21. Bala, L., Ghoshal, U. C., Ghoshal, U., et al. (2006). Malabsorption syndrome with and without small intestinal bacterial overgrowth: A study on upper-gut aspirate using 1H NMR spectroscopy. Magnetic Resonance in Medicine, 56(4), 738–744.

    Article  PubMed  Google Scholar 

  22. Nagana Gowda, G. A. (2011). NMR spectroscopy for discovery and quantitation of biomarkers of disease in human bile. Bioanalysis, 3(16), 1877–1890.

    Article  CAS  Google Scholar 

  23. Graca, G., Duarte, I. F., Goodfellow, B. J., et al. (2008). Metabolite profiling of human amniotic fluid by hyphenated nuclear magnetic resonance spectroscopy. Analytical Chemistry, 80(15), 6085–6092.

    Article  CAS  PubMed  Google Scholar 

  24. Lacitignola, L., Fanizzi, F. P., Francios, E., et al. (2008). H-1 NMR investigation of normal and osteoarthritic synovial fluid in the horse. Veterinary and Comparative Orthopaedics and Traumatology, 21(1), 85–88.

    Article  CAS  PubMed  Google Scholar 

  25. Bertini, I., Luchinat, C., Miniati, M., et al. (2014). Phenotyping COPD by H-1 NMR metabolomics of exhaled breath condensate. Metabolomics, 10(2), 302–311.

    Article  CAS  Google Scholar 

  26. Dietz, C., Ehret, F., Palmas, F., et al. (2017). Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR in Biomedicine, 30(11). https://doi.org/10.1002/nbm.3784. Epub 2017 Sep 15. Review.

    Google Scholar 

  27. Kumar, V., Dwivedi, D. K., & Jagannathan, N. R. (2014). High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR in Biomedicine, 27(1), 80–89.

    Article  CAS  PubMed  Google Scholar 

  28. Airoldi, C., Tripodi, F., Guzzi, C., et al. (2015). NMR analysis of budding yeast metabolomics: A rapid method for sample preparation. Molecular BioSystems, 11(2), 379–383.

    Article  CAS  PubMed  Google Scholar 

  29. Lussu, M., Camboni, T., Piras, C., et al. (2017). 1H NMR spectroscopy-based metabolomics analysis for the diagnosis of symptomatic E. coli-associated urinary tract infection (UTI). BMC Microbiology, 17(1), 201. https://doi.org/10.1186/s12866-017-1108-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lane, A. N., Tan, J., Wang, Y., et al. (2017). Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics. Metabolic Engineering, 43(Pt B), 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalfe, A., Telfah, A., Lambert, J., et al. (2015). Looking into living cell systems: Planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Analytical Chemistry, 87(14), 7402–7410.

    Article  CAS  PubMed  Google Scholar 

  32. Wong, A., Jiménez, B., Li, X., et al. (2012). Evaluation of high resolution magic-angle coil spinning NMR spectroscopy for metabolic profiling of nanoliter tissue biopsies. Analytical Chemistry, 84(8), 3843–3848.

    Article  CAS  PubMed  Google Scholar 

  33. Bell, J. D., Brown, J. C., Kubal, G., et al. (1988). NMR-invisible lactate in blood plasma. FEBS Letters, 235, 81–86.

    Article  CAS  PubMed  Google Scholar 

  34. Chatham, J. C., & Forder, J. R. (1999). Lactic acid and protein interactions: Implications for the NMR visibility of lactate in biological systems. Biochimica et Biophysica Acta, 1426(1), 177–184.

    Article  CAS  PubMed  Google Scholar 

  35. Nagana Gowda, G. A., & Raftery, D. (2014). Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Analytical Chemistry, 86(11), 5433–5440.

    Article  CAS  PubMed  Google Scholar 

  36. Nicholson, J. K., & Gartland, K. P. (1989). 1H NMR studies on protein binding of histidine, tyrosine and phenylalanine in blood plasma. NMR Biomed, 2(2), 77–82.

    Article  CAS  PubMed  Google Scholar 

  37. Daykin, C. A., Foxall, P. J., Connor, S. C., et al. (2002). The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 304(2), 220–230.

    Article  CAS  PubMed  Google Scholar 

  38. Fan, T. W. (2012). In T. W. Fan, R. M. Higashi, & A. N. Lane (Eds.), The handbook of metabolomics, methods in pharmacology and toxicology (pp. 7–27). New York: Springer.

    Chapter  Google Scholar 

  39. Tiziani, S., Emwas, A. H., Lodi, A., et al. (2008). Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 377(1), 16–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wevers, R. A., Engelke, U., & Heerschap, A. (1994). High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies. Clinical Chemistry, 40(7 Pt 1), 1245–1250.

    Article  CAS  PubMed  Google Scholar 

  41. Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Analytical Chemistry, 85(24), 11725–11731.

    Article  PubMed  CAS  Google Scholar 

  42. Hernandez, M. E., Lopez, A. C., Calatayud, A. G., et al. (2001). Vesical uric acid lithiasis in a child with renal hypouricemia. Anales Espanoles de Pediatria, 55(3), 273–276.

    Google Scholar 

  43. Rylander R, . Remer T, Berkemeyer S et al (2006) Acid–base status affects renal magnesium losses in healthy, elderly persons. Journal of Nutrition 136(9):2374–2377.

    Article  CAS  PubMed  Google Scholar 

  44. Welch, A. A., Mulligan, A., Bingham, S. A., et al. (2008). Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: Results from the European prospective investigation into Cancer and nutrition (EPIC)- Norfolk population study. British Journal of Nutrition, 99(6), 1335–1343.

    Article  CAS  PubMed  Google Scholar 

  45. DeSilva, M. A., Shanaiah, N., Nagana Gowda, G. A., et al. (2009). Application of 31P NMR spectroscopy and chemical derivatization for metabolite profiling of lipophilic compounds in human serum. Magnetic Resonance in Chemistry, 47(Suppl 1), S74–S80.

    Article  CAS  PubMed  Google Scholar 

  46. Shanaiah, N., Desilva, M. A., Nagana Gowda, G. A., et al. (2007). Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 104(28), 11540–11544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tayyari, F., Nagana Gowda, G. A., Gu, H., et al. (2013). Raftery D. 15N-cholamine--a smart isotope tag for combining NMR- and MS-based metabolite profiling. Analytical Chemistry, 85(18), 8715–8721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye, T., Mo, H., Shanaiah, N., et al. (2009). Chemoselective 15N tag for sensitive and high-resolution nuclear magnetic resonance profiling of the carboxyl-containing metabolome. Analytical Chemistry, 81(12), 4882–4888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van, Q. N., Issaq, H. J., Jiang, Q., et al. (2008). Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. Journal of Proteome Research, 7(2), 630–639.

    Article  CAS  PubMed  Google Scholar 

  50. Bird, S. S., Sheldon, D. P., Gathungu, R. M., et al. (2012). Structural characterization of plasma metabolites detected via LC-electrochemical coulometric array using LC-UV fractionation, MS, and NMR. Analytical Chemistry, 84(22), 9889–9898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grimes, J. H., & O’Connell, T. M. (2011). The application of micro-coil NMR probe technology to metabolomics of urine and serum. Journal of Biomolecular NMR, 49(3–4), 297–305.

    Article  CAS  PubMed  Google Scholar 

  52. Lacey, M. E., Subramanian, R., Olson, D. L., et al. (1999). High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chemical Reviews, 99(10), 3133–3152.

    Article  CAS  PubMed  Google Scholar 

  53. Ravi, K. C., Henry, I. D., Park, G. H. J., et al. (2010). New solenoidal microcoil NMR probe using zero-susceptibility wire Conc. Magnetic Resonance Part B: Magnetic Resonance Engineering, 37B, 13–19.

    Article  CAS  Google Scholar 

  54. Cloarec, O., Campbell, A., Tseng, L. H., et al. (2007). Virtual chromatographic resolution enhancement in cryoflow LC-NMR experiments via statistical total correlation spectroscopy. Analytical Chemistry, 79(9), 3304–3311.

    Article  CAS  PubMed  Google Scholar 

  55. Djukovic, D., Liu, S., Henry, I., et al. (2006). Signal enhancement in HPLC/micro-coil NMR using automated column trapping. Analytical Chemistry, 78(20), 7154–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Djukovic, D., Appiah-Amponsah, E., Shanaiah, N., et al. (2008). Ibuprofen metabolite profiling using a combination of SPE/column-trapping and HPLC-micro-coil NMR. Journal of Pharmaceutical and Biomedical Analysis, 47(2), 328–334.

    Article  CAS  PubMed  Google Scholar 

  57. Hyberts, S. G., Heffron, G. J., Tarragona, N. G., et al. (2007). Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. American Chemical Society, 129(16), 5108–5116.

    Article  CAS  Google Scholar 

  58. Hyberts, S. G., Arthanari, H., & Wagner, G. (2012). Applications of non-uniform sampling and processing. Topics in Current Chemistry, 316, 125–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rai, R. K., & Sinha, N. (2012). Fast and accurate quantitative metabolic profiling of body fluids by nonlinear sampling of 1H–13C two-dimensional nuclear magnetic resonance spectroscopy. Analytical Chemistry, 84(22), 10005–10011.

    Article  CAS  PubMed  Google Scholar 

  60. Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Oxford University Press: Oxford.

    Google Scholar 

  61. Pervushin, K., Vögeli, B., & Eletsky, A. (2002). Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. Journal of the American Chemical Society, 124(43), 12898–12902.

    Article  CAS  PubMed  Google Scholar 

  62. Motta, A., Paris, D., & Melck, D. (2010). Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy. Analytical Chemistry, 82(6), 2405–2411.

    Article  CAS  PubMed  Google Scholar 

  63. Ghosh, S., Sengupta, A., & Chandra, K. (2017). SOFAST-HMQC-an efficient tool for metabolomics. Analytical and Bioanalytical Chemistry, 409(29), 6731–6738.

    Article  CAS  PubMed  Google Scholar 

  64. Bruschweiler, R., & Zhang, F. (2004). Covariance nuclear magnetic resonance spectroscopy. The Journal of Chemical Physics, 120, 5253–5260.

    Article  CAS  PubMed  Google Scholar 

  65. Giraudeau, P., & Frydman, L. (2014). Ultrafast 2D NMR: An emerging tool in analytical spectroscopy. Annual Review of Analytical Chemistry (Palo Alto Calif), 7, 129–161.

    Article  CAS  Google Scholar 

  66. Adams, R. W., Aguilar, J. A., Atkinson, K. D., et al. (2009). Reversible interactions with Para-hydrogen enhance NMR sensitivity by polarization transfer. Science, 323(5922), 1708–1711.

    Article  CAS  PubMed  Google Scholar 

  67. Reile, I., Eshuis, N., Hermkens, N. K., et al. (2016). NMR detection in biofluid extracts at sub-μM concentrations via Para-H2 induced hyperpolarization. The Analyst, 141(13), 4001–4005.

    Article  CAS  PubMed  Google Scholar 

  68. Bhattacharya, P., Chekmenev, E. Y., Perman, W. H., et al. (2007). Towards hyperpolarized (13)C-succinate imaging of brain cancer. Journal of Magnetic Resonance, 186, 150–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chekmenev, E. Y., Norton, V. A., Weitekamp, D. P., et al. (2009). Hyperpolarized 1H NMR employing low γ nucleus for spin polarization storage. Journal of the American Chemical Society, 131, 3164–3165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shchepin, R. V., Coffey, A. M., Waddell, K. W., et al. (2012). PASADENA hyperpolarized 13C phospholactate. Journal of the American Chemical Society, 134(9), 3957–3960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frydman, L., & Blazina, D. (2007). Ultrafast two-dimensional nuclear magnetic resinance spectroscopy of hyperpolarized solutions. Nature Physics, 3, 415–419.

    Article  CAS  Google Scholar 

  72. Mishkovsky, M., & Frydman, L. (2008). Progress in hyperpolarized ultrafast 2D NMR spectroscopy. ChemPhysChem, 9, 2340–2348.

    Article  CAS  PubMed  Google Scholar 

  73. Saunders, M. G., Ludwig, C., & Gunther, U. L. (2008). Optimizing the signal enhancement in cryogenic ex situ DNP-NMR spectroscopy. Journal of the American Chemical Society, 130, 6914–6915.

    Article  CAS  PubMed  Google Scholar 

  74. Ardenkjaer-Larsen, J. H. (2016). On the present and future of dissolution-DNP. Journal of Magnetic Resonance, 264, 3–12.

    Article  CAS  PubMed  Google Scholar 

  75. Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., et al. (2003). Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 100, 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lane, A. N., & Fan, T. W. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86.

    Article  CAS  Google Scholar 

  77. Lloyd, S. G., Zeng, H., Wang, P., et al. (2004). Lactate isotopomer analysis by 1H NMR spectroscopy: Consideration of long-range nuclear spin-spin interactions. Magnetic Resonance in Medicine, 51, 1279–1282.

    Article  CAS  PubMed  Google Scholar 

  78. Wise, D. R., DeBerardinis, R. J., Mancuso, A., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105, 18782–18787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Coles, N. W., & Johnstone, R. M. (1962). Glutamine metabolism in Ehrlich ascites carcinoma cells. The Biochemical Journal, 83, 284–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science, 122, 501–514.

    Article  CAS  PubMed  Google Scholar 

  81. DeBerardinis, R. J., Mancuso, A., Daikhin, E., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fan, T. W., Lane, A. N., Higashi, R. M., et al. (2011). Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics, 7, 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan, T. W., Lane, A. N., Higashi, R. M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lane, A. N., Fan, T. W., Bousamra, M., II, et al. (2011). Stable Isotope-Resolved Metabolomics (SIRM) in Cancer Research with Clinical Application to NonSmall Cell Lung Cancer OMICS. A Journal of Integrative Biology, 15, 173–182.

    Article  CAS  PubMed  Google Scholar 

  85. Locasale, J. W., Grassian, A. R., Melman, T., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 43, 869–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bingol, K., Zhang, F., Bruschweiler-Li, L., et al. (2012). Carbon backbone topology of the metabolome of a cell. Journal of the American Chemical Society, 134, 9006–9011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bingol, K., Zhang, F., Bruschweiler-Li, L., et al. (2013). Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy. Analytical Chemistry, 85, 6414–6420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chikayama, E., Suto, M., Nishihara, T., et al. (2008). Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: Coarse grained views of metabolic pathways. PLoS One, 3, e3805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang, F., Bruschweiler-Li, L., & Brüschweiler, R. (2012). High-resolution homonuclear 2D NMR of carbon-13 enriched metabolites and their mixtures. Journal of Magnetic Resonance, 225, 10–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Djukovic, D., Nagana Gowda, G. A., & Raftery, D. (2013). Mass spectrometry and NMR spectroscopy-based quantitative metabolomics. In H. J. Issaq & T. D. Veenstra (Eds.), Proteomic and Metabolomic approaches to biomarker discovery (pp. 279–297). New York: Elsevier.

    Chapter  Google Scholar 

  91. Asiago, V., Nagana Gowda, G. A., Zhang, S., et al. (2008). Use of EDTA to minimize ionic strength and pH dependent frequency shifts in the 1H NMR spectra of urine. Metabolomics, 3, 328–336.

    Article  CAS  Google Scholar 

  92. Lauridsen, M., Hansen, S. H., Jaroszewski, J. W., et al. (2007). Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Analytical Chemistry, 79, 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  93. Brereton, R. G. (2010). Chemometrics: Data analysis for the laboratory and chemical plant. Hoboken: Wiley.

    Google Scholar 

  94. Johnson, R. A., & Wichern, D. W. (2007). In Prentice Hall (Ed.), Applied multivariate statistical analysis (56th ed.). Upper Saddle River.

    Google Scholar 

  95. Krzanowksi, W. J. (2000). Principals of multivariate analysis: A users perspective. Oxford, UK: Oxford University Press.

    Google Scholar 

  96. Zhou, X. H., Obuchowski, N. A., & McClish, D. K. (2001). Statistical methods in diagnostic medicine. Hoboken: Wiley.

    Google Scholar 

  97. Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Wiley. ISBN: 978-0-471-48978-8.

    Google Scholar 

  98. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance, 39, 1–40.

    Article  CAS  Google Scholar 

  99. Gu, H., Chen, H., Pan, Z., et al. (2007). Monitoring diet effects via biofluids and their implications for metabolomics studies. Analytical Chemistry, 79(1), 89–97.

    Article  CAS  PubMed  Google Scholar 

  100. Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  CAS  Google Scholar 

  101. Beckwith-Hall, B. M., Brindle, J. T., Barton, R. H., Coen, M., Holmes, E., Nicholson, J. K., & Antti, H. (2002). Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. The Analyst, 127, 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  102. Johnson, R. A., & Wichern, D. W. (1999). Applied multivariate statistical analysis. Upper Saddle River: Prentice Hall.

    Google Scholar 

  103. Nagana Gowda, G. A. (2018). Profiling redox and energy coenzymes in whole blood, tissue and cells using NMR spectroscopy. Metabolites, 8(2), 1–12.

    Google Scholar 

  104. Nagana Gowda, G. A., Abell, L., & Tian, R. (2019). Extending the scope of 1H NMR spectroscopy for the analysis of cellular coenzyme A and acetyl coenzyme A. Analytical Chemistry, 91(3), 2464–2471.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from NIH grants P30CA015704 and RO1GM131491.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nagana Gowda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagana Gowda, G.A., Raftery, D. (2021). NMR-Based Metabolomics. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_2

Download citation

Publish with us

Policies and ethics