Skip to main content

Deep Tectono-Geodynamic Aspects of Development of the Nubian-Arabian Region and Its Relationship with Subsurface Structure

  • Chapter
  • First Online:
The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures

Abstract

At present, a vital influence of regional tectono-geodynamical factors to environmental features is obvious. The Nubian-Arabian region contains such important geological-geophysical phenomena as (1) remnant collision of the ancient Neotethys Ocean, (2) wide development of the continental rifting zones with elements of triple junction, (3) a giant Ural-African geoid’s step, (4) richest hydrocarbon reserves in the world, and (5) presence of the most ancient oceanic crust in the world (Kiama paleomagnetic hyperzone of inverse polarity). This region is also distinguished by several significant historical geological-geophysical events: (1) the Messinian crisis, (2) high seismicity, (3) active volcanism, (4) essential influence of sea level fluctuations and landscape changes to early hominid origin and evolution in Africa, and (5) uniqueness of the modern geological, geophysical and climatic regional factors. The significant influence of geological and geophysical factors on the environment is undoubted. However, we are only at the beginning of the study of this complex impact. For examination of the aforementioned problems, geophysical (satellite gravity, airborne magnetic, seismic, thermal, etc.) and geological (tectonic, geodynamical, structural, geomorphological, cyclic and event stratigraphy, paleobiogeographical, biochemical, etc.) methods were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleinikov AL, Belikov VT, Eppelbaum LV (2001) Some physical foundations of geodynamics (in Russian, contents and summary in English). Kedem Printing-House, Tel Aviv

    Google Scholar 

  • Alekseenko VV, Gavrilyuk YM, Gromushkin DM, Dzhappuev DD, Kudzhaev AU, Kuzminov VV, Mikhailova OI, Stenkin YV, Stepanov VI (2009) Correlation of variations in the thermal neutron flux from the Earth’s crust with the Moon’s phases and with seismic activity. Izv Phys Solid Earth 45(8):709–718

    Article  Google Scholar 

  • Alizadeh AA, Guliyev IS, Kadirov FA, Eppelbaum LV (2016) Geosciences of Azerbaijan, vols I & II. Springer, Heidelberg

    Google Scholar 

  • Al-Juboury A, Al-Hadidy A (2008) Facies and depositional environments of the Devonian-carboniferous succession of Iraq. Geol J 43:383–396

    Article  Google Scholar 

  • Alperovich L, Eppelbaum L, Zheludev V, Dumoulin J, Soldovieri F, Proto M, Bavusi M, Loperte A (2013) A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). J Geophy Eng 10(2):025017, 1–17

    Article  Google Scholar 

  • Al-Riyami K, Robertson A (2002) Mesozoic sedimentary and magmatic evolution of the Arabian continental margin, Northern Syria: evidence from the Baer–Bassit Mélange. Geol Mag 139:395–420

    Article  CAS  Google Scholar 

  • Alsharhan AS, Nairn AEM (2004) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam

    Google Scholar 

  • Andersen OB, Knudsen P, Berry PAM (2009) The DNSC-08GRA global marine gravity field from double retracked satellite altimetry. J Geodesy 84(3):191–199

    Article  Google Scholar 

  • Arieh E, Rabinowitz N (1989) Probabilistic assessment of earthquake hazard in Israel. Tectonophysics 167:223–233

    Article  Google Scholar 

  • Artemieva IM (2006) Global 1° x 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–277

    Article  Google Scholar 

  • Artemieva I, Thybo H, Kaban MK (2006) Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. In: Gee D, Stephenson R (eds) Special volume: European lithosphere dynamics. Geol Soc Lond 32:11–41

    Google Scholar 

  • Balling RC, Cerveny RS (1995) Influence of Lunar phase on daily global temperatures. Science 267(5203):1481–1483

    Article  PubMed  Google Scholar 

  • Barakat AA, Kandil SMR (2019) Diamond in the newly discovered kimberlite and related rocks, Central Eastern Desert, Egypt. In: Proceedings of the XXXVI international conference of “Magmatism of the Earth and related strategic metal deposits”, St Petersburg University, Russia, 23–26 May 2019, pp 36–42

    Google Scholar 

  • Bastow ID, Keir D, Daly E (2011) The Ethiopia Afar Geoscientific Experiment (EAGLE): probing the transition from continental rifting to incipient seafloor spreading. In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and evolution of the African Lithosphere. The Geological Society of America, Special paper 478, pp 51–76

    Google Scholar 

  • Belleville G, Foldes-Busque G, Dixon M, Marquis-Pelletier É, Barbeau S, Poitras J, Chauny J-M, Diodati JG, Fleet R, Marchand A (2013) Impact of seasonal and lunar cycles on psychological symptoms in the ED: an empirical investigation of widely spread beliefs. Gen Hosp Psychiatry 35:192–194

    Article  PubMed  Google Scholar 

  • Ben-Avraham Z (1978) The structure and tectonic setting of the Levan continental margin, Eastern Mediterranean. Tectonophysics 46:313–331

    Article  Google Scholar 

  • Ben-Avraham Z (1992) Development of asymmetric basins along continental transform faults. Tectonophysics 215:209–220

    Article  Google Scholar 

  • Ben-Avraham Z, Ginzburg A (1990) Displaced terranes and crustal evolution of the Levant and the Eastern Mediterranean. Tectonics 9:613–622

    Article  Google Scholar 

  • Ben-Avraham Z, Ginzburg A, Makris J, Eppelbaum L (2002) Crustal structure of the Levant basin, Eastern Mediterranean. Tectonophysics 346:23–43

    Article  Google Scholar 

  • Ben-Avraham Z, Schattner U, Lazar M, Hall JK, Ben-Gai Y, Neev D, Reshef M (2006) Segmentation of the Levant continental margin, Eastern Mediterranean. Tectonics 25(TC5002):1–17

    Google Scholar 

  • Blaser N, Guskov SI, Entin VA, Wolfer DP, Kanevskyi VA, Lipp H-P (2014) Gravity anomalies without geomagnetic disturbances interfere with pigeon homing—a GPS tracking study. J Exp Biol 217:4057–4067

    Article  PubMed  Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the Island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91(B1):599–631

    Article  CAS  Google Scholar 

  • Bordenave ML (2008) The origin of the Permo-Triassic gas accumulations in the Iranian Zagros foldbelt and contiguous offshore areas: a review of the Paleozoic petroleum system. J Pet Geol 31(1):3–42

    Article  CAS  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden Basins. J Afr Earth Sci 43:334–378

    Article  Google Scholar 

  • Braitenberg C, Ebbing J (2009) New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data. J Geophys Res 114(B06402):1–15

    Google Scholar 

  • Braun J (2010) The many surface expressions of mantle dynamics. Nat Geosci 3:825–833

    Article  CAS  Google Scholar 

  • Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1433

    Article  Google Scholar 

  • Camelbeeck T, Iranga MD (1996) Deep crustal earthquakes and active faults along the Rukwa trough, Eastern Africa. Geophys J Int 124:612–630

    Article  Google Scholar 

  • Cermak V (1993) Lithospheric thermal regimes in Europe. Phys Earth Planet Inter 79:179–193

    Article  Google Scholar 

  • Cermak V, Rybach L (eds) (1991) Terrestrial heat flow and lithosphere structure. Springer, Berlin

    Google Scholar 

  • Chumakov IS (1967) Pliocene and Pleistocene deposits of the Nile Valley in Nubia and Upper Egypt. Trans Geol Inst Sov Acad Sci 170:1–113

    Google Scholar 

  • Cloetingh S, Willet SD (2013) Linking deep Earth and surface processes. Eos 94(5):53–54

    Article  Google Scholar 

  • Cook ER, Meko DM, Stockton CW (1997) A new assessment of possible solar and lunar forcing of bidecadal drought rhythm in the Western United States. J Clim 10:1343–1356

    Article  Google Scholar 

  • Davis PM, Slack PD (2002) The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa. Geophys Res Lett 29(7):1117, 1–4

    Article  Google Scholar 

  • de la Vara A, van Baak CCC, Marzochii A, Grothe A, Meijer PT (2016) Quantitative analysis of Paratethys Sea level change during the Messinian Salinity Crisis. Mar Geol 379:39–51

    Article  Google Scholar 

  • Dilek Y, Robinson RT (eds) (2003) Ophiolites in Earth history. The Geological Society of America, London, p 218. Special Publication

    Google Scholar 

  • Dobrzhinetskaya L, Mukhin P, Wang Q, Wirth R, Zhao W, Eppelbaum L, Sokhonchuk T, Green H (2018) Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: search for a primary source. Lithos 310–311:355–368

    Article  CAS  Google Scholar 

  • Domeier M, Van der Voo R, Torsvik T (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics 514-517:14–43

    Article  Google Scholar 

  • Eckstein Y (1978) Review of heat flow data from the Eastern Mediterranean region. Pure Appl Geophys 117:150–159

    Article  Google Scholar 

  • Elgabry MN, Panza GF, Badawy AA, Ibrahim MK (2013) Imaging a relic of complex tectonics: the lithosphere-asthenosphere structure in the Eastern Mediterranean. Terra Nova 25:102–109

    Article  Google Scholar 

  • Eppelbaum LV (2013) Non-stochastic long-term prediction model for US tornado level. Nat Hazards 69(30):2269–2278

    Article  Google Scholar 

  • Eppelbaum LV (2015) Comparison of 3D integrated geophysical modeling in the south Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan tectonic belt. Izv Acad Sci Azerb Rep Ser Earth Sci 3:25–45

    Google Scholar 

  • Eppelbaum LV (2017a) Satellite gravimetry (‘big data’): a powerful tool for regional tectonic examination and reconstructions. In: Veress B, Szigethy J (eds) Horizons in Earth science research, vol 17. Nova Science, New York, pp 54–86

    Google Scholar 

  • Eppelbaum LV (2017b) From micro- to satellite gravity: understanding the Earth. Am J Geogr Res Rev 1(3):1–34

    Google Scholar 

  • Eppelbaum LV (2019) Geophysical potential fields: geological and environmental applications. Elsevier, Amsterdam

    Book  Google Scholar 

  • Eppelbaum L, Isakov A (2015) Implementation of the geo-correlation methodology for predictability of catastrophic weather events: long-term US tornado season and short-term hurricanes. Environ Earth Sci 74:3371–3383

    Article  Google Scholar 

  • Eppelbaum LV, Kardashov VR (2001) Analysis of strongly nonlinear processes in geophysics. In Moresi L, Müller D (eds) In: Proceedings of the chapman conference on exploration geodynamics, Dunsborough, pp 43–44

    Google Scholar 

  • Eppelbaum L, Katz Y (2011) Tectonic-geophysical mapping of Israel and Eastern Mediterranean: implication for hydrocarbon prospecting. Positioning 2(1):36–54. https://doi.org/10.4236/pos.2011.21004

    Article  Google Scholar 

  • Eppelbaum LV, Katz YI (2012a) Mineral deposits in Israel: a contemporary view. In Ya’ari A, Zahavi ED (eds) Israel: social, economic and political developments. Nova Science Publishers, New York, pp 1–41

    Google Scholar 

  • Eppelbaum LV, Katz YI (2012b) Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Izv Acad Sci Azerb Rep Ser Earth Sci 3:29–40

    Google Scholar 

  • Eppelbaum LV, Katz YI (2014) First paleomagnetic map of the Easternmost Mediterranean derived from combined geophysical-geological analysis. Transactions of the 10th EUG Meeting, Geophysical Research Abstracts, vol 16, EGU2014-2424, Vienna, pp 1–5

    Google Scholar 

  • Eppelbaum LV, Katz YI (2015a) Newly developed paleomagnetic map of the Easternmost Mediterranean unmasks geodynamic history of this region. Central Eur J Geosci (Open Geosci) 7(1):95–117

    Google Scholar 

  • Eppelbaum LV, Katz YI (2015b) Eastern Mediterranean: combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Mar Pet Geol 65:198–216

    Article  Google Scholar 

  • Eppelbaum LV, Katz YI (2015c) Paleomagnetic mapping in various areas of the Easternmost Mediterranean based on an integrated geological-geophysical analysis. In: Eppelbaum L (ed) New developments in Paleomagnetism research. Earth Sciences in the 21st century. Nova Science Publisher, New York, pp 15–52

    Google Scholar 

  • Eppelbaum LV, Katz YI (2017a) A new regard on the tectonic map of the Arabian-African region inferred from the satellite gravity analysis. Acta Geophys 65:607–626

    Article  Google Scholar 

  • Eppelbaum LV, Katz YI (2017b) Advanced Paleomagnetic mapping unmasks tectonic pattern of the Easternmost Mediterranean. Transactions of the AAPG European regional conference of “Hydrocarbons in the Mediterranean: revisiting mature plays and understanding new and emerging ideas”. Larnaca, Cyprus

    Google Scholar 

  • Eppelbaum LV, Katz YI (2017c) Some tectono-geodynamical features of the Eurasian-African region. Transactions of the Vth international conference of “Geology and hydrocarbon potential of the Balkan-Black Sea region”. Varna, Bulgaria, pp 13–20

    Google Scholar 

  • Eppelbaum L, Katz Y (2020) Significant tectono-geophysical features of the African-Arabian tectonic region: an overview. Geotectonics (Springer) 54(2):266–283

    Article  CAS  Google Scholar 

  • Eppelbaum LV, Khesin BE (2012) Geophysical studies in the Caucasus. Springer, Heidelberg

    Book  Google Scholar 

  • Eppelbaum LV, Pilchin AN (2005) A quick subsidence of a crustal block in SW Aegean Sea as a possible cause of the end of ancient civilization in 17th century BC. Transactions of the international conference of “Atlantis hypothesis: searching for a lost land”, Milos Island

    Google Scholar 

  • Eppelbaum LV, Pilchin AN (2006) Methodology of Moho discontinuity map development for regions with low thermal characteristics: an example from Israel. Earth Planet Sci Lett 243(3–4):536–551

    Article  CAS  Google Scholar 

  • Eppelbaum LV, Vaksman VL, Kouznetsov SV, Sazonova LM, Smirnov SA, Surkov AV, Bezlepkin B, Katz Y, Korotaeva NN, Belovitskaya G (2006) Discovering of microdiamonds and minerals-satellites in Canyon Makhtesh Ramon (Negev desert, Israel). Dokl Earth Sci 407(2):202–204

    Article  CAS  Google Scholar 

  • Eppelbaum LV, Alperovich L, Zheludev V, Pechersky A (2011) Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. In: Proceedings of the 2011 SAGEEP Conference, Charleston, South Carolina, vol 24, pp 24–60

    Google Scholar 

  • Eppelbaum LV, Katz YI, Ben-Avraham Z (2012) Israel—petroleum geology and prospective provinces. AAPG Eur Newslett 4:4–9

    Google Scholar 

  • Eppelbaum LV, Nikolaev AV, Katz YI (2014) Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the Eastern Mediterranean. Dokl Earth Sci 457(6):710–714

    Google Scholar 

  • Eppelbaum L, Katz Y, Klokochnik J, Kosteletsky J, Zheludev V, Ben-Avraham Z (2018) Tectonic insights into the Arabian-African region inferred from a comprehensive examination of satellite gravity big data. Glob Planet Chang 171:65–87

    Article  Google Scholar 

  • Eppelbaum LV, Katz Y, Ben-Avraham Z (2019) New data of the geodynamic evolution of the Eastern Mediterranean. AAPG conference of “Exploration and development of siliciclastic and carbonate reservoirs in the Eastern Mediterranean”. Tel Aviv

    Google Scholar 

  • Eppelbaum LV, Ben-Avraham Z, Katz Y, Cloetingh S, Kaban M (2020) Combined multifactor evidence of a Giant lower-mantle ring structure below the Eastern Mediterranean. Positioning 11:11–32

    Article  Google Scholar 

  • Erickson AJ, Simmons G, Ryan WBF (1977) Review of heat flow data from the Mediterranean and Aegean Seas. In: Biju-Duval B, Montadert L (eds) International Symposium on the structural history of the Mediterranean Basins, 25th Geological Congress, Technip, Splite, pp 263–280

    Google Scholar 

  • Ershova TB (2015) Space inhomogeneity of the thunderstorm activity and Earth’s gravity field anomalies. Bull Tomsk State Ped Univ 11(164):169–173. (in Russian)

    Google Scholar 

  • Förster HJ, Förster A, Oberhansli R, Stromeyer D (2010) Lithospheric composition and thermal structure of the Arabian Shield in Jordan. Tectonophysics 481(104):29–37

    Article  Google Scholar 

  • Gaina C, Torsvik TH, van Hinsbergen DJJ, Medvedev S, Werner SC, Labails C (2013) The African plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 604:4–25

    Article  Google Scholar 

  • Gardosh MA, Garfunkel Z, Druckman Y, Buchbinder B (2010) Tethyan rifting in the Levant region and its role in early Mesozoic crustal evolution. Geolog Soc Lond 341:9–36

    Article  Google Scholar 

  • Garfunkel Z (1989) Tectonic setting of Phanerozoic magmatism in Israel. Isr J Earth Sci 38(2–4):51–74

    Google Scholar 

  • Garfunkel Z (1998) Constrains on the origin and history of the Eastern Mediterranean basin. Tectonophysics 298(1–3):5–35

    Article  Google Scholar 

  • Gass IG (1968) Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42

    Article  CAS  Google Scholar 

  • Geoid Isolines. https://earthobservatory.nasa.gov/Features/GRACE/page3.php. Last visited on 14 Apr 2020

  • Glennie KW, Clarke MWH, Boeuf MGA, Pilaar WFH, Reinhardt BM (1990) Inter-relationship of Makran-Oman Mountains belts of convergence. In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman region, vol 49. Geological Society, London, Special Publications, pp 773–786

    Google Scholar 

  • Globig J, Fernandez M, Torne M, Verges J, Robert A, Facenna C (2016) New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. J Geophys Res Solid Earth 121:1–36. https://doi.org/10.1002/2016JB012972

    Article  Google Scholar 

  • Golonka J, Ford D (2000) Pangean (late carboniferous—middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Paleoclimatol Paleoecol 161:1–34

    Article  Google Scholar 

  • Gould JL (2017) Animal navigation: a novel map strategy. Curr Biol 27:R833–R852

    Article  CAS  PubMed  Google Scholar 

  • Guliyev IS (2005) Mud volcanism in Azerbaijan. In: Ismailzadeh AT (ed) Recent geodynamics, georisk and sustainable development in the Black Sea to Caspian Sea Region. In: Proceedings of the International Workshop, AIP Conference Proceeding, vol 825, Baku, pp 11–18

    Google Scholar 

  • Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) (2005) Geological framework of the Levant, vol 2. The Levantine Basin and Israel, Jerusalem

    Google Scholar 

  • Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS (2007) Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259:256–265

    Article  CAS  Google Scholar 

  • Hershkovitz I, Weber GI, Quam R et al (2018) The earliest modern humans outside Africa. Science 359:456–459

    Article  CAS  PubMed  Google Scholar 

  • Higgins P (2014) How to deal with climate change. Phys Today 67(10):32–37

    Article  Google Scholar 

  • Huseynov DA, Guliyev IS (2004) Mud volcanic natural phenomena in the South Caspian Basin: geology, fluid dynamics and environmental impact. Environ Geol 46:1012–1023

    Article  CAS  Google Scholar 

  • Jimenez-Munt I, Sabadini R, Gardi A (2006) Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. J Geophys Res 108(B1):1–24

    Google Scholar 

  • Johnson PR (1998) Tectonic map of Saudi Arabia and adjacent areas. Deputy Ministry for Mineral Resources, USGS -TR-98-3, Saudi Arabia

    Google Scholar 

  • Johnson PR, Kattan FH (2008) Lithostratigraphic revision in the Arabian shield: the impacts of geochronology and tectonic analysis. Arab J Sci Eng 33(1):3–16

    Google Scholar 

  • Johnson PR, Kattan FH, Al-Saleh AM (2008) Neoproterozoic ophiolites in the Arabian shield: field relations and structure, chapter 4. In: Kusky TM (ed) Precambrian ophiolites and related rocks, developments in precambrian geology, vol 13, pp 129–162

    Chapter  Google Scholar 

  • Katz YI, Eppelbaum LV (1999) Levantine phase of tectonic-thermal activity in the Eastern Mediterranean. Trans Ann Meet Geol Soc Am. Sect: Planet Geol 31:7, A119

    Google Scholar 

  • Khain VE (2001) Tectonics of continents and oceans. Scientific World, Moscow. (in Russian)

    Google Scholar 

  • Khalilov E (2011) Natural hazards and global problems of the modern civilization. Geocataclysm, Moscow. (in Russian)

    Google Scholar 

  • Khesin BE, Alexeyev VV, Eppelbaum LV (1996) Interpretation of geophysical fields in complicated environments. Modern approaches in geophysics. Kluwer Academic, Boston

    Book  Google Scholar 

  • Klokočník J, Kostelecký J, Eppelbaum L, Bezděk A (2014) Gravity disturbances, the Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. J Earth Sci Res 2(3):88–101

    Article  Google Scholar 

  • Kohyama T, Wallace JM (2016) Rainfall variations induced by the lunar gravitational atmospheric tide and their implications for the relationship between tropical rainfall and humidity. Geophys Res Lett 43:918–923

    Article  Google Scholar 

  • Konert G, Afifi AM, Al-Harjri SA, Droste HJ (2001) Paleozoic stratigraphic and hydrocarbon habitat of the Arabian Plate. GeoArabia 6:407–442

    Article  Google Scholar 

  • Kopp ML (2004) Mobilistic theory of platforms of South-Eastern Europe. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Korostelev F, Basuyau C, Leroy S, Tiberi C, Ahmed A, Stuart GW, Keir D, Rolandone F, Al Ganad F, Khanbari K, Boschi L (2014) Crustal and upper mantle structure beneath South-Western margin of the Arabian Peninsula from teleseismic tomography. Geochem Geophys Geosyst 15:2850–2864

    Article  Google Scholar 

  • Krasheninnikov VA, Hall JK, Hirsch F, Benjamini H, Flexer A (eds) (2005) Geological framework of the Levant, vol 1. Cyprus and Syria, Jerusalem

    Google Scholar 

  • Lapkin IY, Katz YI (1990) Geological events at the boundary of the carboniferous and Permian. Izvestiya, USSR Acad Sci Ser Geol 8:45–58

    Google Scholar 

  • Lenoir J-L, Kṻster D, Liegeois J-R, Utke A, Haider A, Matheis G (1994) Origin and regional significance of late Precambrian and early Palaeozoic granitoids in the pan-African belt of Somalia. Geol Rundsch 83:624–641

    Article  CAS  Google Scholar 

  • Levin BW, Sasorova EV (2012) Seismotectonics and Earth tides. Russ J Pac Geol 6(1):70–77

    Article  Google Scholar 

  • Levin BV, Sasorova EV, Domanskii AV (2013) Properties of critical latitudes, rotation variations and Earth’s seismicity. Bull Far East Branch Russ Acad Sci. Sect: Seismology 3:3–8. (in Russian)

    Google Scholar 

  • Lian D, Yang J, Dilek Y, Wu W, Zhang Z, Xiong F, Liu F, Zhou W (2017) Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. Am Mineral 102:1101–1113

    Google Scholar 

  • Logan JM (1977) Animal behaviour and earthquake prediction. Nature 265:404–405

    Article  Google Scholar 

  • Lucazeau F, Leroy S, Autin J, Bonneville A, Goutorbe B, Rolandone F, d'Acremont E, Watremez L, Düsünur D, Huchon P (2009) Post-rift volcanism and high heatflow at the ocean–continent transition of the Gulf of Aden. Terra Nova 21(4):285–292

    Article  Google Scholar 

  • Mahfoud RF (2002) Presence of diamond in the pyrope peridotite, Dreikeesh area, tartous province, NW Syria: a new theory on the origin of diamond. Microchem J 73(3):265–271

    Article  CAS  Google Scholar 

  • Martinez F, Cochran JR (1989) Geothermal measurements in the northern Red Sea: implications for lithospheric thermal structure anrifting. J Geophys Res 94(12):239–212, 265

    Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007) National Geophysical Data Center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8(6):1–10. https://doi.org/10.1029/2007GC001643

    Article  Google Scholar 

  • McLusky S et al (2000) Global position system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • Milesi JP, Frizon de Lamotte D, de Kock G, Toteu F (2010) Tectonic map of Africa, 1:10 000 000 scale. CCGM-CGMW, Paris

    Google Scholar 

  • Moghadam HS, Corfu F, Stern RJ (2013) U-Pb zircon ages of Late Cretaceous Nain-Dehshir ophiolites, Central Iran. J Geol Soc Lond 170:175–184

    Article  CAS  Google Scholar 

  • Monismith SG, Genin A, Reidenbach NA, Yahel G, Koseff GR (2006) Thermally driven exchanges between a coral reef and the adjoining ocean. J Phys Ocean 36:1332–1347

    Article  Google Scholar 

  • Motavalli-Anbaran SH, Zeyen H, Brunet M-F, Anderstani VE (2011) Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling. Tectonics 30(TC5012):1–16

    Google Scholar 

  • Mposkos ED, Kostopoulos DK (2001) Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Plan Sci Lett 192:497–506

    Article  CAS  Google Scholar 

  • Muluneh AA, Cuffaro M, Dogloni C (2014) Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions. Tectonophysics 632:21–31

    Article  Google Scholar 

  • Muttoni G, Kent DV, Garzanti E, Brack P, Abrahamsen N, Gaetani M (2003) Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth Planet Sci Lett 215:379–394

    Article  CAS  Google Scholar 

  • Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F et al (2009) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14(4):17–48

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79:573–585

    Article  Google Scholar 

  • Nikonov AA (1992) Abnormal animal behavior as a precursor of the 7 December 1988 Spitak, Armenia, Earthquake. Nat Hazards 6:1–10

    Article  Google Scholar 

  • Nyblade AA (2011) The upper-mantle low-velocity anomaly beneath Ethiopia, Kenya, and Tanzania: constraints on the origin of the African superswell in eastern Africa and plate versus plume models of mantle dynamics. In Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and Evolution of the African Lithosphere, The Geological Society of America, Special paper 478, pp 1–14

    Google Scholar 

  • Okay C, Toksoy-Köksal F, Öztüfeksi-Önal A, Aktağ A (2016) Depleted to refertilized mantle peridotites hosting chromitites within the Tunceli ophiolite, eastern Anatolia (Turkey): insights on the back arc origin. Ofioliti 41(1):1–20

    Google Scholar 

  • Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2008) S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochem Geophys Geosyst 9(7):1–15

    Article  Google Scholar 

  • Pasyanos ME, Nyblade AN (2007) A top to bottom lithospheric study of Africa and Arabia. Tectonophysics 444:27–44

    Article  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Pollastro RM (2003) Total petroleum systems of the Paleozoic and Jurassic, Greater Ghawar uplift and adjoining provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf. US Geol Surv Bull 2202-H:1–75

    Google Scholar 

  • Reilinger R, McClusky S (2011) Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979

    Article  Google Scholar 

  • Reilinger RE, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res BO5411:1–26. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Reilly M (2009) Lunar cycle affects cyclone strength. ABC News, Mar 9

    Google Scholar 

  • Riguzzi F, Panza G, Varga P, Doglioni C (2010) Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484:60–73

    Article  Google Scholar 

  • Robertson AHF (1998) Mesozoic–Tertiary tectonic evolution of the Easternmost Mediterranean area: integration of marine and land evidence. In: Robertson AHF, Emeis KC, Richter C, Camerlenghi A (eds) Proc Ocean Drill Program Sci Results 160: 723–782

    Google Scholar 

  • Robertson A (2004) Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Tectonophysics 66:331–387

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:289–343

    Article  Google Scholar 

  • Rolandone F, Lucazeau F, Leroy S, Mareschal J-C, Jorand R, Goutorbe B, Bouquerel H (2013) New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform. Tectonophysics 589:77–89

    Article  Google Scholar 

  • Roure F, Casero P, Addoum B (2012) Alpine inversion of the North African margin and delamination of its continental lithosphere. Tectonics 31(TC3006):1–28. https://doi.org/10.1029/2011TC002989

    Article  Google Scholar 

  • Said R (ed) (1990) The geology of Egypt. AA Balkema/Rotterdam/Brookfield

    Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114(B01411):1–18

    Google Scholar 

  • Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF (2013) Toward 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899

    Article  Google Scholar 

  • Scafetta N (2010) Empirical evidence for a celestial origin of the climate oscillations and its implications. J Atmos and Sol Terr Phys 72:951–970

    Article  Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev Geophys Space Phys 18(1):269–311

    Article  Google Scholar 

  • Scotese CR (2009) Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geol Soc Lond, Spec Publ 326:57–83

    Article  Google Scholar 

  • Segev A (2009) 40Ar/39Ar and K-Ar geochronology of Berriasian-Hauterivian and Cenomanian tectonomagnetic events in northern Israel: implications for regional stratigraphy. Cretac Res 30:810–828

    Article  Google Scholar 

  • Shatsky NS, Belyaevsky NA, Bogdanov AA, Muratov ME (1956) Tectonic map of the USSR and adjacent countries, scale 1: 5000000. Geosgeolizdat, Moscow

    Google Scholar 

  • Sheldrake R (2005) Listen to the animals: why did so many animals escape December’s tsunami? Ecologist 3:1–2

    Google Scholar 

  • Stacy JS, Doe BR, Roberts RJ, Delevaux MH, Gramlich JW (1980) A lead isotope study of mineralization in the Saudi Arabian shield. Contrib Mineral Petrol 74:175–188

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  CAS  Google Scholar 

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19

    Article  Google Scholar 

  • Stamps DS, Iaffaldano G, Calais E (2014) Role of mantle flow in Nubia-Somalia plate divergence. Geophys Res Lett 42:290–296. https://doi.org/10.1002/2014GL062515

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stern RJ, Johnson PR, Kroner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian-Nubian Shield. Dev Precambrian Geol 13:95–128

    Article  Google Scholar 

  • Suetsugu D, Isse T, Tanaka S, Obayashi M, Shiobara H, Sugioka H, Kanazawa T, Fukao Y, Barruol G, Reymond D (2009) South Pacific mantle plumes imaged by seismic observation on islands and seafloor. Geochem Geophys Geosyst 10:1–18

    Article  Google Scholar 

  • Tainton KM, Seggie AM, Bayly BA, Tomlinson I, Quadling KE (1999) Garnet thermobarometry: implication for mantle heat flow within the Tanzanian craton. In: Proceedings of the VIIth international Kimberlite Confreference. Red Roof Publishing CC, Cape Town, pp 852–860

    Google Scholar 

  • Tunini L, Jimenez-Munt I, Fernandes M, Verges J, Villasenor A (2015) Lithospheric mantle heterogeneities beneath the Zagros Mountains and the Iranian Plateau: a petrological-geophysical study. Geophys J Int 200:596–614

    Article  CAS  Google Scholar 

  • Usoskin IG (2008) A history of solar activity over Millennia. Living Rev Sol Phys 5(3). http://www.livingreviews.org/lrsp-2008-3

  • Van der Meer DG, van Hinsbergen DJJ, Spakman W (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723:309–448

    Article  Google Scholar 

  • Verges J, Saura E, Casciello E, Fernandez M, Villasenor A, Jimenez-Munt I, Garsia-Castellanos D (2011) Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geol Mag:1–23. https://doi.org/10.1017/S0016756811000331

  • Véronnet A (1912) Rotation de l’Ellipsoide Hétérogène et Figure Exacte de la Terre. J Math Pures Appl 6(8):331–463

    Google Scholar 

  • Verzhbitsky EV (1996) Geothermal regime and tectonics of marine areas bottom along the alpine-Himalayan Belt. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Wdowinski S, Bock Y, Baer G, Prawirodirdjo L, Bechor L, Naaman S, Knafo R, Forrai Y, Melzer Y (2004) GPS measurements of current crustal movements along the Dead Sea Fault. J Geophys Res 109(B05403):1–16. https://doi.org/10.1029/2003JB002640

    Article  Google Scholar 

  • Weissbrod T (2005) The Paleozoic in Israel and environs. In: Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) Geological framework of the Levant, vol 2. The Levantine Basin and Israel, Jerusalem, pp 283–315

    Google Scholar 

  • Wen L, Helmberger DV (1998) Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors. Science 279:1701–1703

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical rair processes involving cryptochrome. Biosensors 4:221–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuebbles DJ, Kunkel K, Wenher M, Zobel Z (2014) Severe weather in Unites States under a changing climate, 2014. EOS AGU Trans 95(18):149, 156

    Article  Google Scholar 

  • Yakobson AN (1997) Velocity of shear seismic waves in the Southern Caspian lithosphere. Dokl Russ Acad Sci 302(2):258–260

    Google Scholar 

  • Yamasaki T, Stephenson R (2011) Back-arc rifting initiated with a hot and wet continental lithosphere. Earth Planet Sci Lett 302(1–2):172–184

    Article  CAS  Google Scholar 

  • Yaroshevich MI (2011) On some signatures of gravity anomaly influence to tropical cyclones of the north-west part of the Pacific Ocean. Dokl Russ Acad Sci 437(4):548–552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Eppelbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eppelbaum, L., Katz, Y. (2021). Deep Tectono-Geodynamic Aspects of Development of the Nubian-Arabian Region and Its Relationship with Subsurface Structure. In: Jawad, L.A. (eds) The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures. Springer, Cham. https://doi.org/10.1007/978-3-030-51506-5_10

Download citation

Publish with us

Policies and ethics