Skip to main content

Hermann Weyl’s Space-Time Geometry and the Origin of Gauge Theory 100 Years Ago

  • Chapter
  • First Online:
One Hundred Years of Gauge Theory

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 199))

Abstract

One of the major developments of twentieth century physics has been the gradual recognition that a common feature of the known fundamental interactions is their gauge structure. In this lecture the early history of gauge theory is reviewed, emphasizing especially Hermann Weyl’s seminal contributions of 1918 and 1929. Wolfgang Pauli’s early construction in 1953 of a non-Abelian Kaluza-Klein theory is described in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    German original: “Es ist ein Genie-Streich ersten Ranges”.

  2. 2.

    German original: “Dieser Tage ist es mir, wie ich glaube, gelungen, Elektrizität und Gravitation aus einer gemeinsamen Quelle herzuleiten ...”.

  3. 3.

    In the local equations \(\omega _{\;\beta }^\alpha \) denotes the pull-back \(\sigma ^{*}(\omega _{\;\beta }^\alpha )\).

  4. 4.

    The integrand in Eq. (21) is in local coordinates indeed identical to the scalar density \(R_{\alpha \beta \gamma \delta } R^{\alpha \beta \gamma \delta } \sqrt{-g}dx^{0}\wedge \ldots \wedge dx^{3}\) which is used by Weyl (\(R_{\alpha \beta \gamma \delta }\)= the curvature tensor of the Weyl connection).

  5. 5.

    We adopt here the somewhat naive interpretation of energy-momentum conservation for generally invariant theories of the older literature.

  6. 6.

    German original:“...[dies] erscheint mir als eines der stärksten Argumente zugunsten der hier vorgetragenen Theorie—soweit im rein Spekulativen überhaupt von einer Bestätigung die Rede sein kann”.

  7. 7.

    German original:“Lässt man den Zusammenhang des ds mit Massstab- und Uhr-Messungen fallen, so verliert die Relativitätstheorie ihre empirische Basis”.

  8. 8.

    “Zusammenfassend kann man sagen, dass es der Theorie von Weyl bisher nicht gelungen ist, das Problem der Materie der Lösung näher zu bringen”.

  9. 9.

    Später führte die Quantentheorie die Schrödinger-Diracschen Potentiale \(\psi \) des Elektron-Positron-Feldes ein; in ihr trat ein aus der Erfahrung gewonnenes und die Erhaltung der Ladung garantierendes Prinzip auf, das die \(\psi \) mit den elektromagnetischen Potentialen \(\varphi _i\) in ähnlicher Weise verknüpft wie meine spekulative Theorie die Gravitationspotentiale \(g_{ik}\) mit den \(\varphi _i\), wobei zudem die \(\varphi _i\) in einer bekannten atomaren statt in einer unbekannten kosmologischen Einheit gemessen werden. Es scheint mir kein Zweifel, dass das Prinzip der Eichinvarianz hier seine richtige Stelle hat, und nicht, wie ich 1918 geglaubt hatte, im Zusammenspiel von Gravitation und Elektrizität”.

  10. 10.

    At the time it was thought by Weyl, and indeed by all physicists, that the 2-component theory requires a zero mass. In 1957, after the discovery of parity nonconservation, it was found that the 2-component theory could be consistent with a finite mass. See K. M. Case, [22].

  11. 11.

    Pauli turned to literature. In a letter of 18 February 1929 he wrote from Zürich to Oskar Klein: “For my proper amusement I then made a short sketch of a utopian novel which was supposed to have the title ‘Gulivers journey to Urania’ and was intended as a political satire in the style of Swift against present-day democracy. [...] Caught in such dreams, suddenly in January, news from Heisenberg reached me that he is able, with the aid of a trick ... to get rid of the formal difficulties that stood against the execution of our quantum electrodynamics” [31].

References

  1. H. Weyl, Gravitation und Elektrizität. Sitzber. Preuss. Akad. Wiss., 465–480 (1918). See also Gesammelte Abhandlungen. 6 Vols. Ed. K. Chadrasekharan, Springer (an English translation is given in [17])

    Google Scholar 

  2. N. Straumann, Zum Ursprung der Eichtheorien bei Hermann Weyl. Physikalische Blätter 43(11), 414–421 (1987)

    Article  Google Scholar 

  3. H. Weyl, Elektron und Gravitation. Z. Phys. 56, 330–352 (1929)

    Google Scholar 

  4. F. London, Quantenmechanische Deutung der Theorie von Weyl. Z. Phys. 42, 375–389 (1927)

    Article  ADS  Google Scholar 

  5. V. Fock, Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt. Z. Phys. 39, 226–232 (1926)

    Google Scholar 

  6. O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895–906 (1926); for an English translation, see [17]

    Google Scholar 

  7. L. O‘Raifeartaigh, N. Straumann Historical Origins and Some Modern Developments. Gauge Theory. Rev. Mod. Phys. 72, 1–23 (2000)

    Google Scholar 

  8. The Collected Papers of Albert Einstein, Vol. 1–13 (Princeton University Press, 1987). See also: http://www.einstein.caltech.edu/

  9. N. Straumann, General Relativity, Second Edition, Graduate Texts in Physics (Springer, 2013)

    Google Scholar 

  10. J. Audretsch, F. Gähler, N. Straumann, Wave fields in Weyl spaces and conditions for the existence of a preferred pseudo-Riemannian structure. Comm. Math. Phys. 95, 41–51 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Weyl, Space \(\cdot \) Time \(\cdot \) Matter. Translated from the 4th German Edition. London: Methuen, Raum\(\cdot \)Zeit\(\cdot \)Materie, 8 (Springer-Verlag, Auflage, 1922), p. 1993

    Google Scholar 

  12. W. Pauli, Zur Theorie der Gravitation und der Elektrizität von H. Weyl. Physikalische Zeitschrift 20, 457–467 (1919)

    MATH  Google Scholar 

  13. W. Pauli, Relativitätstheorie. Encyklopädie der Mathematischen Wissenschaften 5.3, Leipzig: Teubner, 539–775 (1921); W. Pauli, Theory of Relativity (Pergamon Press, New York, 1958)

    Google Scholar 

  14. E. Schrödinger, Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons. Z. Phys. 12, 13–23 (1922)

    Article  ADS  Google Scholar 

  15. V.V. Raman, P. Forman, Why was it Schrödinger who developed de Broglie’s ideas? Hist. Stud. Phys. Sci. 1, 291–314 (1969)

    Google Scholar 

  16. C. N. Yang, Hermann Weyl’s contribution to physics, in Hermann Weyl, Edited by K. Chandrasekharan, Springer (1980)

    Google Scholar 

  17. L. O’Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, Princeton, 1997)

    Google Scholar 

  18. E. Schrödinger, Centenary Celebration of a Polymath (Cambridge University Press, C. Kilmister, 1987)

    Google Scholar 

  19. H.  Weyl, Selecta. Birkhäuser-Verlag (1956)

    Google Scholar 

  20. E. Wigner, Eine Bemerkung zu Einsteins neuer Formulierung des allgemeinen Relativitätsprinzips. Z. Phys. 53, 592–596 (1929)

    Article  ADS  Google Scholar 

  21. E. Cartan, Leçons sur la G\(\acute{\rm e}\)om\(\acute{\rm e}\)trie des Espaces de Riemann, Gauthier-Villars, Paris 1928; 2nd edn. (1946)

    Google Scholar 

  22. K.M. Case, Reformulation of the Majorana theory of the Neutrino. Phys. Rev. 107, 307–316 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Weyl, Gruppentheorie und Quantenmechanik. Wissenschaftliche Buchgesellschaft, Darmstadt 1981 (Nachdruck der 2. Aufl., Leipzig 1931). Engl. translation: Group Theory and Quantum Mechanics (Dover, New York, 1950)

    Google Scholar 

  24. W.  Pauli, In 22, Vol. I, p. 518

    Google Scholar 

  25. In Carl Seelig: Albert Einstein (Europa-Verlag Zürich, 1960), p. 274

    Google Scholar 

  26. V. Fock, Geometrisierung der Diracschen Theorie des Elektrons. Z. Phys. 57, 261–277 (1929)

    Article  ADS  Google Scholar 

  27. H. Tetrode, Allgemein-relativistische Quantentheorie des Elektrons. Z. Phys. 50, 336–346 (1928)

    Article  ADS  Google Scholar 

  28. E. Schrödinger, Diracsches Elektron im Schwerefeld I. Sitzber. Preuss. Akad. Wiss., 105–128 (1932); English translation by C. Kiefer in Gen. Rel. Grav. 52, article number 4 (2020)

    Google Scholar 

  29. V. Bargmann, Sitzber. Preuss. Akad. Wiss. 346 (1932)

    Google Scholar 

  30. L. Infeld, B. L. van der Waerden, Sitzber. Preuss. Akad. Wiss., 380–474 (1932)

    Google Scholar 

  31. W. Heisenberg, W. Pauli, Zur Quantenelektrodynamik der Wellenfelder. I. Z. Phys. 56, 1–61 (1929)

    Article  ADS  Google Scholar 

  32. W. Heisenberg, W. Pauli, Zur Quantenelektrodynamik der Wellenfelder. II. Z. Phys. 59, 168–190 (1930)

    ADS  MATH  Google Scholar 

  33. S.S. Schweber, Quantum Electrodynamics and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga (Princeton University Press, Princeton, 1994)

    Google Scholar 

  34. W. Pauli, Wissenschaftlicher Briefwechsel, Vol. IV, Part II, ed. by K. v Meyenn, (Springer-Verlag, 1999)

    Google Scholar 

  35. P. Gulmanelli, Su una Teoria dello Spin Isotropico (Pubblicazioni della Sezione di Milano dell’istituto Nazionale di Fisica Nucleare, Casa Editrice Pleion, Milano, 1954)

    Google Scholar 

  36. Pauli to Pais, Letter [1614] in [35]

    Google Scholar 

  37. W. Pauli, Theory of Relativity (Pergamon, New York, 1958)

    Google Scholar 

  38. Pauli to Pais, Letter [1682] in [35]

    Google Scholar 

  39. W. Pauli, Über ein Kriterium für Ein- oder Zweiwertigkeit der Eigenfunktionen in der Wellenmechanik. Helv. Phys. Acta 12, 147–168 (1939)

    MATH  Google Scholar 

  40. C.N. Yang, Selected papers 1945–1980 with Commentary (Freeman, San Francisco, 1983), p. 525

    Google Scholar 

  41. Pauli to Yang, Letter [1727] in [35]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Straumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Straumann, N. (2020). Hermann Weyl’s Space-Time Geometry and the Origin of Gauge Theory 100 Years Ago. In: De Bianchi, S., Kiefer, C. (eds) One Hundred Years of Gauge Theory. Fundamental Theories of Physics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-51197-5_1

Download citation

Publish with us

Policies and ethics