Skip to main content

Use of Microalgae Pigments in Aquaculture

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Aquaculture sector shows the fastest growth among the global food production industries. However, nutrition and diseases are two important hurdles that need to be addressed to propel the industry forward. Consistent supply of high-quality feed for growing larvae of important aquaculture species is one of the bottlenecks of the local larviculture industry. Microalgal pigments containing carotenoids, phycobiliproteins and chlorophylls are highly nutritious functional foods containing high antioxidant biomolecules associated with fast growth, high immunity, enhanced pigmentation and high productivity. Their high contents of lipids and fatty acids make them valuable alternatives for replacement of fish meals in livestock and fish feeds. Polyunsaturated fatty acids (PUFAs), functional amino acids, vitamins and other biomolecules associated with health are also found in many microalgae species. Major pigments such as astaxanthin, lutein, beta-carotene, chlorophylls, and phycobiliproteins have been proven as valuable sources for the development of functional, nutritional and therapeutic commodities to enhance pigmentation, survival, disease resistance and health of cultured organisms. In spite of their well-known applications, commercial production of pigment supplies such as astaxanthin, fucoxanthin, canthaxanthin, β-carotene and phycobiliproteins are still limited by production technologies. More research and innovation for cost-effective pigments production and applications in improving growth and health in aquatic organisms are important for a sustainable aquaculture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Baky, H. H., El Baroty, G. S., & Ibrahem, E. A. (2015). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutricion Hospitalaria, 32(1), 231–241.

    CAS  PubMed  Google Scholar 

  • Adel, M., Yeganeh, S., Dadar, M., Sakai, M., & Dawood, M. A. O. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish and Shellfish Immunology, 56, 436–444.

    CAS  PubMed  Google Scholar 

  • Adenan, N. S., Yusoff, F. M., Medipally, S. R., & Shariff, M. (2016). Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology, 37, 669–676.

    CAS  PubMed  Google Scholar 

  • Ahmad, M. T., Shariff, M., Yusoff, F. M., Goh, Y. M., & Banerjee, S. (2019). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture 1–19. https://doi.org/10.1111/raq.12320.

  • Ahmed, F., Fanning, K., Netzel, M., Turner, W., Li, Y., & Schenk, P. M. (2014). Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chemistry, 165, 300–306. https://doi.org/10.1016/j.foodchem.2014.05.107.

    Article  CAS  PubMed  Google Scholar 

  • Aklakur, M. (2018). Natural antioxidants from sea: A potential industrial perspective in aquafeed formulation. Reviews in Aquaculture, 10, 385–399. https://doi.org/10.1111/raq.12167.

    Article  Google Scholar 

  • Alishahi, M., Karamifar, M., Mesbah, M., & Zarei, M. (2014). Hemato-immunological responses of Heros severus fed diets supplemented with different levels of Dunaliella salina. Fish Physiology and Biochemistry, 40, 57–65.

    CAS  PubMed  Google Scholar 

  • Allewaert, C. C., Vanormelingen, P., Daveloose, I., Verstraete, T., & Vyverman, W. (2017). Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species. Algal Research, 21, 191–202. https://doi.org/10.1016/j.algal.2016.10.021.

    Article  Google Scholar 

  • Ana, A. A., Ghada, A., & Egbert, J. B. (2009). Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787, 272–279.

    Google Scholar 

  • Ashour, M., Abo-Taleb, H., Abou-Mahmoud, M., & El-Feky, M. M. M. (2018). Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia canal, on aquaculture potential of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 18, 1163–1175. https://doi.org/10.4194/1303-2712-v18_10_03.

    Article  Google Scholar 

  • Barbosa, M. J., Morais, R., & Choubert, G. (1999). Effect of carotenoid source and dietary lipid content on blood astaxanthin concentration in rainbow trout (Oncorhynchus mykiss). Aquaculture, 176, 331–341. https://doi.org/10.1016/S0044-8486(99)00115-5.

    Article  CAS  Google Scholar 

  • Barra, L., Chandrasekaran, R., Corato, F., & Brunet, C. (2014). The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Marine Drugs, 12, 1641–1675.

    PubMed  PubMed Central  Google Scholar 

  • Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2, 164–173. https://doi.org/10.1016/j.algal.2013.01.004.

    Article  Google Scholar 

  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Food Reviews in Food Science and Nutrition, 56(13), 2209–2222.

    CAS  Google Scholar 

  • Ben-Amotz, A. (1999). Dunaliella β-carotene. In Enigmatic microorganisms and life in extreme environments (pp. 399–410). Dordrecht: Springer.

    Google Scholar 

  • Benavente-Valdés, J. R., Aguilar, C., Contreras-Esquivel, J. C., Méndez-Zavala, A., & Montañez, J. (2016). Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnology Reports, 10, 117–125. https://doi.org/10.1016/j.btre.2016.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biabani Asrami, M., Sudagar, M., Shahraki, N., & Vahdat, S. (2019). Effect of extracted phycocyanin from Spirulina platensis on growth parameters, colorations, digestive enzymes and body chemical compositions of Guppy fish (Poecilia reticulata). Journal of Survey in Fisheries Sciences, 6(1), 21–34.

    Google Scholar 

  • Boonyaratpalin, M., Thongrod, S., Supamattaya, K., Britton, G., & Schlipalius, L. E. (2001). Effects of β-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus monodon. Aquaculture Research, 32, 182–190. https://doi.org/10.1046/j.1355-557x.2001.00039.x.

    Article  CAS  Google Scholar 

  • Bonilla-Ahumada, F., Sanghamitra Khandual, S., & Lugo-Cervantes, E. (2018). Microencapsulation of algal biomass (Tetraselmis chuii) by spray-drying using different encapsulation materials for better preservation of betacarotene and antioxidant compounds. Algal Research, 36, 229–238.

    Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.

    CAS  Google Scholar 

  • Boussiba, S., & Vonshak, A. (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant and Cell Physiology, 32(7), 1077–1082.

    CAS  Google Scholar 

  • Brizio, P., Benedetto, A., Righetti, M., Prearo, M., Gasco, L., Squadrone, S., et al. (2013). Astaxanthin and canthaxanthin (xanthophyll) as supplements in rainbow trout diet: In vivo assessment of residual levels and contributions to human health. Journal of Agriculture and Food Chemistry, 61, 10954–10959.

    CAS  Google Scholar 

  • Bryant, D. A. (1982). Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria. Journal of General Microbiology, 128, 835–844.

    CAS  Google Scholar 

  • Bryant, D. A., Guglielmi, G., Tandeau de Marsac, N., & Castets, A. M. (1979). The structure of cyanobacterial phycobilisomes: A model. Archives of Microbiology, 123, 113–127.

    CAS  Google Scholar 

  • Bubrick, P. (1991). Production of astaxanthin from Haematococcus. Bioresource Technology, 38(2–3), 237–239.

    CAS  Google Scholar 

  • Cai, Y. A., Murphy, J. T., Wedemaye, G. J., & Glazer, A. N. (2001). Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Analytical Biochemistry, 290, 186–204.

    CAS  PubMed  Google Scholar 

  • Camacho-Rodríguez, J., Macías-Sánchez, M. D., Cerón-García, M. C., Alarcón, F. J., & Molina-Grima, E. (2018). Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: Nutrient stability under different storage conditions. Journal of Applied Phycology, 30, 1049–1059. https://doi.org/10.1007/s10811-017-1281-5.

    Article  CAS  Google Scholar 

  • Chaoruangrit, L., Tapaneeyaworawong, P., Powtongsook, S., & Sanoamuang, L. O. (2018). Alternative microalgal diets for cultivation of the fairy shrimp Branchinella thailandensis (Branchiopoda: Anostraca). Aquaculture International, 26, 37–47. https://doi.org/10.1007/s10499-017-0191-5.

    Article  Google Scholar 

  • Chakdar, H., & Pabbi, S. (2017). Algal pigments for human health and cosmeceuticals. Algal Green Chemistry. https://doi.org/10.1016/B978-0-444-63784-0.00009-6.

    Article  Google Scholar 

  • Charest, D. J., Balaban, M. O., Marshall, M. R., & Cornell, J. A. (2001). Astaxanthin extraction from crawfish shells by supercritical CO2 with ethanol as cosolvent. Journal of Aquatic Food Product Technology, 10, 81–96.

    Google Scholar 

  • Chen, J. H., Chen, C. Y., & Chang, J. S. (2017). Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79, 66–73. https://doi.org/10.1016/j.jtice.2017.04.022.

    Article  CAS  Google Scholar 

  • Choi, Y. E., Yun, Y. S., Park, J. M., & Yang, J. W. (2011). Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresource Technology, 102(24), 11249–11253.

    CAS  PubMed  Google Scholar 

  • Crupi, P., Toci, A. T., Mangini, S., Wrubl, F., Rodolfi, L., Tredici, M. R., et al. (2013). Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high‐performance liquid chromatography coupled with diode‐array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Communications in Mass Spectrometry, 27(9), 1027–1035.

    Google Scholar 

  • da Silva, V. B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77. https://doi.org/10.1016/j.cofs.2015.12.006.

    Article  Google Scholar 

  • de Jesus Raposo, M. F., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93, 479–486.

    PubMed  Google Scholar 

  • Del Campo, J. A., Moreno, J., Rodrı́guez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76(1), 51–59.

    Google Scholar 

  • Del Campo, J. A., Rodrıguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2001). Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of Biotechnology, 85(3), 289–295.

    Google Scholar 

  • Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64(6), 848–854.

    PubMed  Google Scholar 

  • Deli, J., Gonda, S., Nagy, L. Z. S., Szabó, I., Gulyás-Fekete, G., Agócs, A., et al. (2014). Carotenoid composition of three bloom-forming algae species. Food Research International, 65, 215–223. https://doi.org/10.1016/j.foodres.2014.05.020.

    Article  CAS  Google Scholar 

  • Domínguez, A., Ferreira, M., Coutinho, P., Fábregas, J., & Otero, A. (2005). Delivery of astaxanthin from Haematocuccus pluvialis to the aquaculture food chain. Aquaculture, 250, 424–430. https://doi.org/10.1016/j.aquaculture.2005.08.005.

    Article  CAS  Google Scholar 

  • El-Sheekh, M. M., Khairy, H. M., Gheda, S. F., & El-Shenody, R. A. (2016). Application of Plackett-Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculata. Egyptian Journal of Aquatic Research, 42, 57–64. https://doi.org/10.1016/j.ejar.2015.10.001.

    Article  Google Scholar 

  • Estrada, J. E., Bermejo-Bescós, P., & del Fresno, A. M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco, 56(5–7), 497–500.

    Google Scholar 

  • FAO. (2018). The state of world fisheries and aquaculture 2018—Meeting the sustainable development goals. Rome.

    Google Scholar 

  • Farahin, A. W., Yusoff, F. M., Basri, M., Nagao, N., & Shariff, M. (2019). Use of microalgae: Tetraselmis tetrathele extract in formulation of nanoemulsions for cosmeceutical application. Journal of Applied Phycology, 31(3), 1743–1752.

    CAS  Google Scholar 

  • Feller, R., Matos, A. P., Mazzutti, S., Moecke, E. H. S., Tres, M. V., Derner, R. B., et al. (2018). Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. Journal of Supercritical Fluids, 133, 437–443. https://doi.org/10.1016/j.supflu.2017.11.015.

    Article  CAS  Google Scholar 

  • Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Chan, K. W., Khong, N. M. H., et al. (2015). Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal Research, 12, 26–32.

    Google Scholar 

  • Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M. H., et al. (2017). Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology, 241, 175–183.

    CAS  PubMed  Google Scholar 

  • Foo, S. C., Yusoff, F. M., Mustapha, U. I., Foo, J. B., Norsharina, I., Nur Hanisah, A., et al. (2019). Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. Biotechnology Reports, 21, e00296.

    PubMed  Google Scholar 

  • García-González, M., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1), 81–90.

    PubMed  Google Scholar 

  • García-Malea, M. C., Acién, F. G., Del Río, E., Fernández, J. M., Cerón, M. C., Guerrero, M. G., et al. (2009). Production of astaxanthin by Haematococcus pluvialis: Taking the one-step system outdoors. Biotechnology and Bioengineering, 102(2), 651–657.

    PubMed  Google Scholar 

  • Gershwin, M. E., & Belay, A. (Eds.). (2007). Spirulina in human nutrition and health. London: Taylor and Francis.

    Google Scholar 

  • Glazer, A. N. (1985). Light harvesting by phycobilisomes. Annual Review of Biophysics and Biophysical Chemistry, 14, 47–77.

    CAS  PubMed  Google Scholar 

  • Glazer, A. N. (1994). Phycobiliproteins—A family of valuable, widely used fluorophores. Journal of Applied Phycology, 6, 105–112.

    CAS  Google Scholar 

  • Globe Newswire. (2019). The algae products—Global market outlook (2017–2026). Research and market. https://www.researchandmarkets.com/research/wfblsc/global_algae?w=12.

  • Goh, S. H., Alitheen, N. B., Yusoff, F. M., Yap, S. K., & Loh, S. P. (2014). Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces apoptosis in MDA-MB-231 breast cancer cells. Pharmacognosy Magazine, 10(37), 1–8 (downloaded on 14 Feb 2020).

    Google Scholar 

  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396–1412.

    CAS  PubMed  Google Scholar 

  • Gora, A. H., Ambasankar, K., Sandeep, K. P., Rehman, S., Agarwal, D., Ahmad, I., et al. (2019). Effect of dietary supplementation of crude microalgal extracts on growth performance, survival and disease resistance of Lates calcarifer (Bloch, 1790) larvae. Indian Journal of Fisheries, 66(1), 64–72.

    Google Scholar 

  • Gouveia, L., Choubert, G., Pereira, N., Santinha, J., Empis, J., & Gomes, E. (2002). Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquaculture Research, 33, 987–993.

    CAS  Google Scholar 

  • Gouveia, L., & Empis, J. (2003). Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: Effect of storage conditions. Innovative Food Science and Emerging Technologies, 4, 227–233.

    CAS  Google Scholar 

  • Grima, E. M., Pérez, J. S., Camacho, F. G., Sánchez, J. G., Fernández, F. A., & Alonso, D. L. (1994). Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. Journal of Biotechnology, 37(2), 159–166.

    Google Scholar 

  • Grossman, A. R., Schaefer, M. R., Chiang, G. G., & Collier, J. L. (1993). The phycobilisomes a light harvesting complex responsive to environmental conditions. Microbiological Reviews, 57, 725–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guler, B. A., Deniz, I., Demirel, Z., & Imamoglu, E. (2020). Computational fluid dynamics simulation in scaling-up of airlift photobioreactor for astaxanthin production. Journal of Bioscience and Bioengineering, 129(1), 86–92.

    Google Scholar 

  • Hagen, C., Grünewald, K., Xyländer, M., & Rothe, E. (2001). Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. Journal of Applied Phycology, 13, 79–87.

    Google Scholar 

  • Harlıoğlu, M. M., & Farhadi, A. (2017). Factors affecting the reproductive efficiency in crayfish: Implications for aquaculture. Aquaculture Research, 48, 1983–1997. https://doi.org/10.1111/are.13263.

    Article  Google Scholar 

  • Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. Journal of Fermentation and Bioengineering, 82(2), 113–118.

    CAS  Google Scholar 

  • He, P., Duncan, J., & Barber, J. (2007). Astaxanthin accumulation in the green alga Haematococcus pluvialis: Effects of cultivation parameters. Journal of Integrative Plant Biology, 49, 447–451.

    CAS  Google Scholar 

  • Heo, J., Shin, D. S., Cho, K., Cho, D. H., Lee, Y. J., & Kim, H. S. (2018). Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: Optimization of lutein productivity via regulation of light intensity and carbon source. Algal Research, 33, 1–7. https://doi.org/10.1016/j.algal.2018.04.029.

    Article  Google Scholar 

  • Ho, A. L. F. C., Orlando Bertran, N. M., & Lin, J. (2013). Dietary esterified astaxanthin concentration effect on dermal coloration and chromatophore physiology in spinecheek anemonefish, Premnas biaculeatus. Journal of the World Aquaculture Society, 44, 76–85.

    CAS  Google Scholar 

  • Ho, S. H., Chan, M. C., Liu, C. C., Chen, C. Y., Lee, W. L., Lee, D. J., et al. (2014). Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275–282. https://doi.org/10.1016/j.biortech.2013.11.031.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Q., & Richmond, A. (1994). Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6(4), 391–396.

    Google Scholar 

  • Higuera-Ciapara, I., Felix-Valenzuela, L., & Goycoolea, F. M. (2006). Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46, 185–196. https://doi.org/10.1080/10408690590957188.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi, Y., Nagao, N., Yusoff, F. M., Kurosawa, N., Kawasaki, N., & Toda, T. (2016). Lumostatic operation controlled by the optimum light intensity per dry weight for the effective production of Chlorella zofingiensis in the high cell density continuous culture. Algal Research, 20, 110–117.

    Google Scholar 

  • Iijima, N., Fugii, I., Shimamatsu, H., & Katoh, S. (1982). Anti-tumor agent and method of treatment therewith. U.S. Patent No. P1150-726-A82679.

    Google Scholar 

  • Jian-Feng, N., Guang-Ce, W., & Cheng-Kui, T. (2006). Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expression and Purification, 49(1), 23–31.

    Google Scholar 

  • Jin, E., Feth, B., & Melis, A. (2003). A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnology and Bioengineering, 81(1), 115–124.

    CAS  PubMed  Google Scholar 

  • Johnston, R. K., Siegfried, E. J., Snell, T. W., Carberry, J., Carberry, M., Brown, C., et al. (2018). Effects of astaxanthin on Brachionus manjavacas (Rotifera) population growth. Aquaculture Research, 49, 2278–2287. https://doi.org/10.1111/are.13688.

    Article  CAS  Google Scholar 

  • Ju, Z. Y., Deng, D. F., Dominy, W. G., & Forster, I. P. (2011). Pigmentation of Pacific white shrimp, Litopenaeus vannamei, by dietary astaxanthin extracted from Haematococcus pluvialis. Journal of the World Aquaculture Society, 42, 633–644.

    Google Scholar 

  • Kannaujiya, V. K., Sundaram, S., & Sinha, R. P. (2017). Phycobiliproteins: Recent developments and future applications. Singapore: Springer Nature. https://doi.org/10.1007/978-981-10-6460-9.

  • Kannaujiya, V. K., Rastogi, R. P., & Sinha, R. P. (2014). GC constituents and relative codon expressed amino acid composition in cyanobacterial phycobiliproteins. Gene, 546, 162–171.

    CAS  PubMed  Google Scholar 

  • Khatoon, H., Yusoff, F. M., Banerjee, S., & Shariff, M. (2007). Use of periphytic cyanobacteria and mixed diatoms coated substrates for improving water quality, survival and growth of Penaeus monodon postlarvae in closed water hatchery system. Aquaculture, 271, 196–205.

    CAS  Google Scholar 

  • Kim, S. M., Kang, S. W., Kwon, O. N., Chung, D., & Pan, C. H. (2012). Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological Chemistry, 55(4), 477–483.

    Google Scholar 

  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63. https://doi.org/10.1016/j.algal.2014.09.002.

    Article  Google Scholar 

  • Koo, S. Y., Cha, K. H., Song, D. G., Chung, D., & Pan, C. H. (2012). Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. Journal of Applied Phycology, 24(4), 725–730.

    CAS  Google Scholar 

  • Li, M. H., Robinson, E. H., Oberle, D. F., & Zimba, P. V. (2007). Effects of various dietary carotenoid pigments on fillet appearance and pigment absorption in channel catfish, Ictalurus punctatus. Journal of the World Aquaculture Society, 38, 557–563.

    Google Scholar 

  • Li, M., Wu, W., Zhou, P., Xie, F., Zhou, Q., & Mai, K. (2014). Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture, 434, 227–232. https://doi.org/10.1016/j.aquaculture.2014.08.022.

    Article  CAS  Google Scholar 

  • Libkind, D., Moliné, M., & Tognetti, C. (2012). Isolation and selection of new astaxanthin producing strains of Xanthophyllomyces dendrorhous. In Microbial carotenoids from fungi (pp. 183–194). Totowa, NJ: Humana Press.

    Google Scholar 

  • Lim, K. C., Yusoff, F. M., Shariff, M., & Kamarudin, M. S. (2018). Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 10(3), 738–773.

    Google Scholar 

  • Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.

    CAS  PubMed  Google Scholar 

  • Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., & Chen, F. (2014). Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs, 12, 3487–3515.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Huang, Y., Zhang, R., Cai, T., & Cai, Y. (2016). Medical application of Spirulina platensis derived C-phycocyanin. Evidence-Based Complementary and Alternative Medicine, 2016, 7803846. https://doi.org/10.1155/2016/7803846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockwood, S. F., O’Malley, S., & Mosher, G. L. (2003). Improved aqueous solubility of crystalline astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) by Captisol®(sulfobutyl ether β-cyclodextrin). Journal of Pharmaceutical Sciences, 92, 922–926.

    CAS  PubMed  Google Scholar 

  • Long, X., Wu, X., Zhao, L., Liu, J., & Cheng, Y. (2017). Effects of dietary supplementation with Haematococcus pluvialis cell powder on coloration, ovarian development and antioxidation capacity of adult female Chinese mitten crab, Eriocheir sinensis. Aquaculture, 473, 545–553. https://doi.org/10.1016/j.aquaculture.2017.03.010.

    Article  CAS  Google Scholar 

  • Ma, R., Zhao, X., Xie, Y., Ho, S. H., & Chen, J. (2019). Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology, 275, 416–420.

    CAS  PubMed  Google Scholar 

  • Maadane, A., Merghoub, N., Ainane, T., El Arroussi, H., Benhima, R., Amzazi, S., et al. (2015). Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of Biotechnology, 215, 13–19. https://doi.org/10.1016/j.jbiotec.2015.06.400.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, M. M., El-Lamie, M. M. M., Kilany, O. E., & Dessouki, A. A. (2018). Spirulina (Arthrospira platensis) supplementation improves growth performance, feed utilization, immune response, and relieves oxidative stress in Nile tilapia (Oreochromis niloticus) challenged with Pseudomonas fluorescens. Fish and Shellfish Immunology, 72, 291–300.

    CAS  PubMed  Google Scholar 

  • Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31, 1532–1542.

    CAS  PubMed  Google Scholar 

  • McClure, D. D., Luiz, A., Gerber, B., Barton, G. W., & Kavanagh, J. M. (2018). An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Research, 29, 41–48.

    Google Scholar 

  • Medipally, S. R., Yusoff, F. M., Banerjee, S., & Shariff, M. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International, 2015, 519513.

    PubMed  PubMed Central  Google Scholar 

  • Menasveta, P., Worawattanamateekul, W., Latscha, T., & Clark, J. S. (1993). Correction of black tiger prawn (Penaeus monodon Fabricius) coloration by astaxanthin. Aquacultural Engineering, 12, 203–213.

    Google Scholar 

  • Meng, Z., Zhang, B., Liu, B., Li, H., Fan, S., & Yu, D. (2017). High carotenoids content can enhance resistance of selected Pinctada fucata families to high temperature stress. Fish and Shellfish Immunology, 61, 211–218. https://doi.org/10.1016/j.fsi.2016.12.032.

    Article  CAS  PubMed  Google Scholar 

  • Minhas, A. K., Hodgson, P., Barrow, C. J., & Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 7, 546.

    PubMed  PubMed Central  Google Scholar 

  • Mohamed Ramli, N., Verdegem, M. C. J., Yusoff, F. M., Zulkifely, M. K., & Verreth, J. A. J. (2017). Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte Stigeoclonium nanum immobilized in alginate beads. Aquaculture Environment Interactions, 9, 213–222.

    Google Scholar 

  • Muchtar, M., Sukenda, S., Nuryati, S., & Hidayatullah, D. (2019). The use of immunostimulant from phycocyanin of Spirulina platensis to control motile aeromonad septicaemia (MAS) disease in common carp Cyprinus carpio. Jurnal Akuakultur Indonesia, 18(1), 101–109. https://doi.org/10.19027/jai.18.1.101-109.

    Article  Google Scholar 

  • Nadukooru, N., & Yallapragada, P. R. (2015). Carotenoid as a sensitive indicator of sub lethal cadmium toxicity in Penaeus monodon post larvae. Ecotoxicology, 24, 339–345. https://doi.org/10.1007/s10646-014-1382-8.

    Article  CAS  PubMed  Google Scholar 

  • Natrah, F. M. I., Yusoff, F. M., Shariff, M., Abas, F., & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19(6), 711–718.

    CAS  Google Scholar 

  • Nelis, H., & De Leenheer, A. P. (1991). Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology, 70(3), 181–191.

    CAS  Google Scholar 

  • Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). Algal biodiversity. Phycologia, 35(4), 308–326. https://doi.org/10.2216/i0031-8884-35-4-308.1.

    Article  Google Scholar 

  • Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12(3–5), 499–506.

    CAS  Google Scholar 

  • Ou, Y., Lina, L., Pana, Q., Yanga, X., & Cheng, X. (2012). Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environmental Toxicology and Pharmacology, 34, 721–726.

    CAS  PubMed  Google Scholar 

  • Padyana, A. K., Bhat, V. B., Madyastha, K. M., Rajashankar, K. R., & Ramakumar, S. (2001). Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochemical and Biophysical Research Communications, 282, 893–898.

    CAS  PubMed  Google Scholar 

  • Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., et al. (2016). Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 15, 24–31. https://doi.org/10.1016/j.algal.2016.01.017.

    Article  Google Scholar 

  • Pandey, V. D., Pandey, A., & Sharma, V. (2013). Biotechnological applications of cyanobacterial phycobiliproteins. International Journal of Current Microbiology and Applied Sciences, 2, 89–97.

    Google Scholar 

  • Park, H., Kwak, M., Seo, J., Ju, J., Heo, S., Park, S., et al. (2018). Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess and Biosystems Engineering, 41, 1355–1370. https://doi.org/10.1007/s00449-018-1963-7.

    Article  CAS  PubMed  Google Scholar 

  • Parsiegla, G., Shrestha, B., Carrière, F., & Vertes, A. (2012). Direct analysis of phycobilisomal antenna proteins and metabolites in small cyanobacterial populations by laser ablation electrospray ionization mass spectrometry. Analytical Chemistry, 84, 34–38.

    CAS  PubMed  Google Scholar 

  • Pavlidis, M., Papandroulakis, N., & Divanach, P. A. (2006). Method for the comparison of chromaticity parameters in fish skin: Preliminary results for coloration pattern of red skin Sparidae. Aquaculture, 258, 211–219. https://doi.org/10.1016/j.aquaculture.2006.05.028.

    Article  Google Scholar 

  • Pelah, D., Sintov, A., & Cohen, E. (2004). The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World Journal of Microbiology and Biotechnology, 20(5), 483–486.

    CAS  Google Scholar 

  • Pérez, L., Salgueiro, J. L., González, J., Parralejo, A. I., Maceiras, R., & Cancela, Á. (2017). Scaled up from indoor to outdoor cultures of Chaetoceros gracilis and Skeletonema costatum microalgae for biomass and oil production. Biochemical Engineering Journal, 127, 180–187.

    Google Scholar 

  • Pham, M. A., Byun, H. G., Kim, K. D., & Lee, S. M. (2014). Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture, 431, 65–72. https://doi.org/10.1016/j.aquaculture.2014.04.019.

    Article  CAS  Google Scholar 

  • Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57, 7159–7170.

    CAS  PubMed  Google Scholar 

  • Pohlenz, C., & Gatlin, D. M., III. (2014). Interrelationships between fish nutrition and health. Aquaculture, 431, 111–117. https://doi.org/10.1016/j.aquaculture.2014.02.008.

    Article  CAS  Google Scholar 

  • Poonkum, W., Powtongsook, S., & Pavasant, P. (2015). Astaxanthin induction in microalga Haematococcus pluvialis with flat panel airlift photobioreactors under indoor and outdoor conditions. Preparative Biochemistry and Biotechnology, 45(1), 1–17.

    CAS  PubMed  Google Scholar 

  • Prasanna, R., Sood, A., Suresh, A., Nayak, S., & Kaushik, B. (2007). Potentials and applications of algal pigments in biology and industry. Acta Botanica Hungaria, 9(1–2), 131–156.

    Google Scholar 

  • Prieto, A., Canavate, J. P., & García-González, M. (2011). Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology, 151(2), 180–185.

    CAS  PubMed  Google Scholar 

  • Rastogi, R. P., Pandey, A., Larroche, C., & Madamwar, D. (2018). Algal green energy—R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 82, 2946–2969.

    CAS  Google Scholar 

  • Rearte, T. A., Vélez, C. G., Beligni, M. V., Figueroa, F. L., Gómez, P. I., Flaig, D., et al. (2018). Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity. Algal Research, 33, 218–230. https://doi.org/10.1016/j.algal.2018.05.014.

    Article  Google Scholar 

  • Reis, A., Mendes, A., Lobo-Fernandes, H., Empis, J. A., & Novais, J. M. (1998). Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresource Technology, 66, 181–187.

    CAS  Google Scholar 

  • Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy, 92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034.

    Article  Google Scholar 

  • Rodríguez, H., Rivas, J., Guerrero, M. G., & Manuel, L. M. (1991). Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria. Journal of Biotechnology, 20, 263–270.

    Google Scholar 

  • Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., et al. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70(2018), 62–93. https://doi.org/10.1016/j.plipres.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Sanchez, R., Ortiz-Butron, R., Blas-Valdivia, V., Hernandez-Garcia, A., & Cano-Europa, E. (2012). Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chemistry, 135, 2359–2365.

    CAS  PubMed  Google Scholar 

  • Sánchez, J. F., Fernández-Sevilla, J. M., Acién, F. G., Cerón, M. C., Pérez-Parra, J., & Molina-Grima, E. (2008). Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology, 79(5), 719–729.

    Google Scholar 

  • Safafar, H., Uldall Nørregaard, P., Ljubic, A., Møller, P., Løvstad Holdt, S., & Jacobsen, C. (2016). Enhancement of protein and pigment content in two Chlorella species cultivated on industrial process water. Journal of Marine Science and Engineering, 4, 1–15. https://doi.org/10.3390/jmse4040084.

    Article  Google Scholar 

  • Scheer, H. (1981). Biliproteine. Angewandte Chemie, 93, 230–250.

    CAS  Google Scholar 

  • Schirmer, T., Bode, W., Huber, R., Sidler, W., & Zuber, H. (1985). X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. Journal of Molecular Biology, 184, 257–277.

    CAS  PubMed  Google Scholar 

  • Sefc, K. M., Brown, A. C., & Clotfelter, E. D. (2014). Carotenoid-based coloration in cichlid fishes. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 173, 42–51. https://doi.org/10.1016/j.cbpa.2014.03.006.

    Article  CAS  Google Scholar 

  • Sidler, W. A. (1994). Phycobilisome and phycobiliprotein structures. In D. A. Bryant (Ed.), The molecular biology of cyanobacteria (pp. 139–216). Dordrecht: Kluwer Academic Publication.

    Google Scholar 

  • Singh, S. P., & Montgomery, B. L. (2013). Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon. Biochemical and Biophysical Research Communications, 433, 84–89.

    CAS  PubMed  Google Scholar 

  • Sinha, R. P., Lebert, M., Kumar, A., Kumar, H. D., & Häder, D.-P. (1995). Spectroscopic and biochemical analyses of UV effect on phycobiliprotein of Anabena sp. and Nostoc carmium. Botanica Acta, 108, 87–92.

    CAS  Google Scholar 

  • Sivathanu, B., & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Preventive Nutrition and Food Science, 2, 276–282. https://doi.org/10.1016/j.bionut.2012.04.006.

    Article  Google Scholar 

  • Sonani, R. R., Rastogi, R. P., Patel, R., & Madamwar, D. (2016). Recent advances in production, purification and applications of phycobiliproteins. World Journal of Biological Chemistry, 7, 100–109.

    PubMed  PubMed Central  Google Scholar 

  • Soto-Sierra, L., Stoykova, P., & Nikolov, Z. L. (2018). Extraction and fractionation of microalgae-based protein products. Algal Research, 36, 175–192. https://doi.org/10.1016/j.algal.2018.10.023.

    Article  Google Scholar 

  • Subramanian, B., Tchoukanova, N., Djaoued, Y., Pelletier, C., & Ferron, M. (2013). Raman spectroscopic investigations on intermolecular interactions in aggregates and crystalline forms of trans-astaxanthin. Journal of Raman Spectroscopy, 44, 219–226.

    CAS  Google Scholar 

  • Sun, L., Wang, S., Chen, L., & Gong, X. (2003). Promising fluorescent probes from phycobiliproteins. IEEE Journal of Selected Topics in Quantum Electronics, 9, 177–188.

    CAS  Google Scholar 

  • Sun, X., Chang, Y., Ye, Y., Ma, Z., Liang, Y., Li, T., et al. (2012). The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture, 342, 62–68. https://doi.org/10.1016/j.aquaculture.2012.02.019.

    Article  CAS  Google Scholar 

  • Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., & Guan, B. (2015). Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresource Technology, 186, 67–73. https://doi.org/10.1016/j.biortech.2015.02.101.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Wang, X., & Liu, J. (2019). Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Research, 41, 101545.

    Google Scholar 

  • Tokushima, H., Inoue-Kashino, N., Nakazato, Y., Masuda, A., Ifuku, K., & Kashino, Y. (2016). Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnology for Biofuels, 9(1), 235.

    PubMed  PubMed Central  Google Scholar 

  • Udayan, A., Arumugam, M., & Pandey, A. (2017). Nutraceuticals from algae and cyanobacteria. Algal Green Chemistry. https://doi.org/10.1016/B978-0-444-63784-0.00004-7.

    Article  Google Scholar 

  • van Bergeijk, S. A., Paullada Salmerón, J. A., López Pérez, A. I., Moreno, J., Canavate, J. P., & García-González, M. (2013). Lutein enrichment of the rotifer Brachionus sp. using freeze-dried Muriellopsis sp. cells. Aquaculture Research, 44, 1724–1730. https://doi.org/10.1111/j.1365-2109.2012.03178.x.

    Article  CAS  Google Scholar 

  • van Breemen, R. B., Dong, L., & Pajkovic, N. D. (2012). Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry, 312, 163–172. https://doi.org/10.1016/j.ijms.2011.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viera, I., Pérez-Gálvez, A., & Roca, M. (2018). Bioaccessibility of marine carotenoids. Marine Drugs, 16, 1–21.

    Google Scholar 

  • Vonshak, A., & Tomaselli, L. (2002). Arthrospira (Spirulina): systematics and ecophysiology. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Wade, N. M., Anderson, M., Sellars, M. J., Tume, R. K., Preston, N. P., & Glencross, B. D. (2012). Mechanisms of colour adaptation in the prawn Penaeus monodon. Journal of Experimental Biology, 215, 343–350. https://doi.org/10.1242/jeb.064592.

    Article  PubMed  Google Scholar 

  • Wade, N. M., Cheers, S., Bourne, N., Irvin, S., Blyth, D., & Glencross, B. D. (2017a). Dietary astaxanthin levels affect colour, growth, carotenoid digestibility and the accumulation of specific carotenoid esters in the giant tiger shrimp, Penaeus monodon. Aquaculture Research, 48, 395–406. https://doi.org/10.1111/are.12888.

    Article  CAS  Google Scholar 

  • Wade, N. M., Gabaudan, J., & Glencross, B. D. (2017b). A review of carotenoid utilisation and function in crustacean aquaculture. Reviews in Aquaculture, 9, 141–156. https://doi.org/10.1111/raq.12109.

    Article  Google Scholar 

  • Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J., et al. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresource Technology, 167, 276–283. https://doi.org/10.1016/j.biortech.2014.06.030.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Manabe Y, Sugawara T, Paul NA, Zhao J (2018a) Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chemistry, 242, 247–255. http://dx.doi.org/10.1016/j.foodchem.2017.09.075.

  • Wang, Z., Cai, C. F., Cao, X. M., Zhu, J. M., He, J., Wu, P., et al. (2018b). Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration of Chinese mitten crab Eriocheir sinensis. Aquaculture, 483, 230–237. http://dx.doi.org/10.1016/j.aquaculture.2017.10.006.

  • Watanuki, H., Ota, K., Tassakka, A. C. M. A. R., Kato, T., & Sakai, M. (2006). Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture, 258, 157–163.

    Google Scholar 

  • Xiao, J., Liu, R., Yang, L., Hu, Q., & Zhang, X. (2019). Macrofiltration-A leap towards high efficiency microalgal harvesting: A case study using Scenedesmus acuminatus. Algal Research, 37, 1–10. https://doi.org/10.1016/j.algal.2018.11.001.

    Article  Google Scholar 

  • Xie, Y., Zhao, X., Chen, J., Yang, X., Ho, S. H., Wang, B., et al. (2017). Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology, 244, 664–671. https://doi.org/10.1016/j.biortech.2017.08.022.

    Article  CAS  PubMed  Google Scholar 

  • Xie, S., Fang, W., Wei, D., Liu, Y., Yin, P., Niu, J., et al. (2018). Dietary supplementation of Haematococcus pluvialis improved the immune capacity and low salinity tolerance ability of post-larval white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 80, 452–457. https://doi.org/10.1016/j.fsi.2018.06.039.

    Article  CAS  PubMed  Google Scholar 

  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. S. (2014). An overview: Biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research (Thessaloniki), 21, 1–10.

    Google Scholar 

  • Yi, X., Xu, W., Zhou, H., Zhang, Y., Luo, Y., Zhang, W., et al. (2014). Effects of dietary astaxanthin and xanthophylls on the growth and skin pigmentation of large yellow croaker Larimichthys croceus. Aquaculture, 433, 377–383. https://doi.org/10.1016/j.aquaculture.2014.06.038.

    Article  CAS  Google Scholar 

  • Yusoff, F. M., Nagao, N., Imaizumi, Y., & Toda, T. (2019). Bioreactor for microalgal cultivation systems: strategy and development. In: A. Rastegari, A. Yadav, & A. Gupta (Eds.), Prospects of renewable bioprocessing in future energy systems. Biofuel and biorefinery technologies (Vol. 10, pp. 117–159). Cham: Springer Nature.

    Google Scholar 

  • Zhang, C. W., & Richmond, A. (2003). Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Marine Biotechnology, 5(3), 302–310.

    Google Scholar 

  • Zhang, C., Zhang, L., & Liu, J. (2016). The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiology and Biochemistry, 107, 75–81. https://doi.org/10.1016/j.plaphy.2016.05.029.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. W., Zhou, X. F., Zhang, Y. L., Cheng, P. F., Ma, R., Cheng, W. L., et al. (2018). Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28(12), 2019–2028.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the SATREPS-COSMOS Malaysia-Japan collaborative project (2016–2021) under the auspices of the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Md. Yusoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yusoff, F.M., Banerjee, S., Nagao, N., Imaizumi, Y., Shariff, M., Toda, T. (2020). Use of Microalgae Pigments in Aquaculture. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_19

Download citation

Publish with us

Policies and ethics