Skip to main content

Solvent Emulsification Evaporation and Solvent Emulsification Diffusion Techniques for Nanoparticles

  • Chapter
  • First Online:
Emerging Technologies for Nanoparticle Manufacturing

Abstract

Nowadays, there has been an increased demand of nanoparticulate-based drug delivery as nanoparticles (NPs) generally give more advantages over the conventional drug carriers for targeting in various parameters like more drug encapsulation, more stability and site specificity, sustained release profile and the ability to deliver both lyophilic and lyophobic types of drug particles using different modes of administration. Nanocarriers have been expansively studied as particulate drug delivery in the field of pharmaceuticals, due to their controlled and sustained release properties, small size and biocompatibility with body tissues. Manufacturing technique used to prepare nanoparticles plays a vital role in achieving their desired properties for a particular application. Several methods to formulate nanoparticles have been developed during the last many decades, and these are classified based on whether the particle formation undergoes a polymerization reaction or a nanoparticle forms directly from a preformed polymer or ionic gelation method. The choice of method for the preparation of nanoparticle is highly dependent on the physicochemical properties of both the polymer and the drug compound. Polymeric nanoparticles are generally manufactured by polymerization of monomers using anionic polymer or by preparing homogeneous dispersion of the dissolved polymers which gives nanoparticles using various methods such as solvent evaporation, emulsification solvent diffusion, salting out, emulsification diffusion and supercritical fluid (SCF) technology. This chapter emphasizes on how emulsification followed by solvent evaporation and solvent diffusion permits an emulsion of a polymer solution to customize as nanoparticles. The chapter also provides concise information on recent trends of research in specified domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MU, Ali SM, Ahmad I. Applications of nanotechnology in pharmaceutical development. In: Lipids in nanotechnology; Academic Press and AOCS Press, USA, 2012. p. 171–90.

    Google Scholar 

  • Allemann E, Gurny R, Doekler E. Drug-loaded nanoparticles preparation methods and drug targeting issues. Eur J Pharm Biopharm. 1993;39:173–91.

    CAS  Google Scholar 

  • Asim U, Shahid N, Naveed R. Selection of a suitable method for the synthesis of copper nanoparticles. Nano. 2012;7(5):18.

    Google Scholar 

  • Aubrey E, et al. Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles. Sci Rep. 2017;7:Article number: 43731.

    Article  Google Scholar 

  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    Article  CAS  PubMed  Google Scholar 

  • Catarina PR, Ronald JN, Antonio JR. Nano capsulation 1. Method of preparation of drug – loaded polymeric nanoparticles. Nano Technol Biol Med. 2006;2:8–21.

    Article  CAS  Google Scholar 

  • Cen C, et al. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity. Front Mater Sci. 2014;8(4):332–42.

    Article  Google Scholar 

  • Chang TMS, Microcapsules and nanoparticles in medicine and pharmacy, edited by M. Donbrow, CRC Press, London; 1992. p. 323.

    Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nano particles: current possibilities and future trends. Eur J Pharm Biopharm. 1995;41:2–13.

    CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45.

    Article  CAS  PubMed  Google Scholar 

  • Domenico L, Mikhail AK, Maria TC. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019; Article ID 3702518, 26 pages

    Google Scholar 

  • Fang Y, et al. Gastrointestinal responsive polymeric nanoparticle for oral delivery of nanoparticle, characterization and in vivo evaluation. J Pharm Sci. 2019;108:2994–3002.

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Lv F, Liu L, et al. Conjugated polymer nanoparticles for drug delivery and imaging. Appl Mater Interfaces. 2010;2(8):2429–35.

    Article  CAS  Google Scholar 

  • Fernanda VL, et al. Characterization of progesterone loaded biodegradable blend polymeric nanoparticles. Ciência Rural. 2015;45(11):2082–8.

    Article  CAS  Google Scholar 

  • Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21:1428–39.

    Article  CAS  PubMed  Google Scholar 

  • Gi-Ho S, Beom JL, Cheong WC. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig. 2017;47:287–96.

    Article  CAS  Google Scholar 

  • Gupta J, Mohan G, Prabakaran L, Gupta R. Emulsion solvent diffusion evaporation technique: formulation design optimization and investigation of aceclofenac loaded ethyl cellulose microspheres. Int J Drug Dev Res. 2013 October–December;5(4):336–49.

    Google Scholar 

  • Hye-Young K, Jun-Young L, Sung-Wook C, Yangsoo J, Jung-Hyun K. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids Surf A Physicochem Eng Asp. 2001;182:123–30.

    Article  Google Scholar 

  • Jaiswal J, Gupta SK, Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Control Release. 2004;96:169–78.

    Article  CAS  PubMed  Google Scholar 

  • Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc. 1997;74:317–21.

    Article  CAS  Google Scholar 

  • Kessiane BA, et al. PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids Surf B: Biointerfaces. 2019;18:935–42.

    Google Scholar 

  • Khinast J, Baumgartner R, Roblegg E. Nano-extrusion: a one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase. AAPS Pharm Sci Tech. 2013;14(2):601–4.

    Article  CAS  Google Scholar 

  • Konan YN, Berton M, Gurny R, Allémann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 2003;18(3–4):241–9.

    Article  CAS  PubMed  Google Scholar 

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, et al. Magnetic nanoparticles: from design and synthesis to real world applications. Nano. 2017;7(9):243.

    Google Scholar 

  • Lamprecht A, Ubrich N, Pérez MH, Lehr C-M, Hoffman M, Maincent P. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm. 1999;184(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  • Le Thi MH. Preparation of drug nanoparticles by emulsion evaporation method. APCTP–ASEAN workshop on advanced materials science and nanotechnology. J Phys Conf Ser. 2009;187:012047.

    Article  CAS  Google Scholar 

  • Le Thi MH. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J Exp Nanosci. 2012;7(2):189–97.

    Article  CAS  Google Scholar 

  • Lemoine D, Preat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release. 1998;54:15–27.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yang X, Ho WWS. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci. 2010;100:75–93.

    Article  PubMed  CAS  Google Scholar 

  • Mainardes RM, et al. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Int J Pharm. 2010;395:266–71.

    Article  CAS  PubMed  Google Scholar 

  • Manuel LL, et al. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics. 2019;11:1–13.

    Google Scholar 

  • McNamara K, Tofail SAM. Nanoparticles in biomedical applications. Adv in Phys X. 2017;2(1):54–88.

    CAS  Google Scholar 

  • Mi-Yeon L, et al. Development of a novel nanocapsule formulation by emulsion-diffusion combined with high hydrostatic pressure. J Microencapsul. 2009;26(2):122–9.

    Article  CAS  Google Scholar 

  • Mody VV, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanraj VJ, Chen Y. Nanoparticles – a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  • Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H. Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci. 2008;317:458–68.

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, et al. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol. 2000;107(1-2):137–43.

    Article  CAS  Google Scholar 

  • Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagavarma BVN, Hemant KS, Yadav A, Vasudh LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles – a review. Asian J Pharm Clin Res. 2012;5(3):16 23.

    Google Scholar 

  • Naser T, et al. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis. Pharm Dev Technol. 2019;24(7):891–901.

    Article  CAS  Google Scholar 

  • Navneet S, Parshotam M, Senshang L. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11:404–16.

    Article  Google Scholar 

  • Nijaporn Y, Brian RS, Zhengrong C. Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. Int J Pharm. 2009 September 8;379(1):174–80.

    Article  CAS  Google Scholar 

  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS Pharm Sci Tech. 2014;15(6):1527–34.

    Article  CAS  Google Scholar 

  • Pathak Y, Thassu D. Drug delivery, nanoparticles, formulation and characterization. In: Pathak Y, Thassu D, Swarbrick J, editors. Drugs and the pharmaceutical sciences. New York: Informa Healthcare; 2009. p. 394.

    Google Scholar 

  • Patil J. Multidisciplinary research opportunities: need of the hour. J Pharmacovigil. 2016;4:147.

    Google Scholar 

  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615.

    Article  CAS  PubMed  Google Scholar 

  • Pieper S, et al. Doxorubicin loaded PLGA nanoparticle – a systemic evaluation for preparation technique and evaluation. Mater Today Proc. 2017;4:S188–92.

    Article  Google Scholar 

  • Quing W, et al. Uniform size PLA nanoparticle: preparation by premix membrane emulsification. Int J Pharm. 2008;359:294–7.

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero D, Allemann E, Doelker E, Fessi H. A mechanistic study of the formation of polymer nanoparticle by the emulsification-diffusion technique. Colloid Polym Sci. 1997;275:640–7.

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, Allémann E, Doelker E. Adaptation and optimization of the emulsification – diffusion technique to prepare lipidic nanospheres. Eur J Pharm Sci. 2005;26(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.

    Article  CAS  Google Scholar 

  • Rubiana MM, et al. Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Braz J Pharm Sci. 2006;42(4):523–30.

    Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seda R, et al. Dexamethasone-loaded PLGA-nanoparticles for potential local treatment of oral precancerous lesions. Pharm Dev Technol. 2019;25(2):149–58.

    Google Scholar 

  • Sovan LP, Utpal J, Manna PK, Mohanta GP, Nanoparticle MR. An overview of preparation and characterization. J Appl Pharm Sci. 2011;1(6):228–34.

    Google Scholar 

  • Sugiura S, et al. Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification. J Colloid Interface Sci. 2004;270(1):221–8.

    Article  CAS  PubMed  Google Scholar 

  • Tamayo-Esquivel D, Ganem-Quintanar A, Martinez AL, Navarrete Rodriguez M, Rodriguez-Romo S, Quintanar-Guerrero D. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J Nanosci Nanotechnol. 2006;6(9–10):3134–8.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi A, et al. PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water in-soluble drug. Int J Pharm Tech Res. 2010;2(3):2116–23.

    CAS  Google Scholar 

  • Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm. 2003;257(1-2):153–60.

    Article  CAS  PubMed  Google Scholar 

  • Vanderhoff JW, El Aasser MS, Ugelstad J. Polymer emulsification process. US4177177. 1979.

    Google Scholar 

  • Weissig V, Elbayoumi T, editors. Pharmaceutical nanotechnology: basic protocols, Methods in molecular biology, vol. 2000. New York: Springer; 2019.

    Google Scholar 

  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013. Article ID 340315, 15 pages https://doi.org/10.1155/2013/340315.

  • Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016; Article ID 1087250, 15

    Google Scholar 

  • Yuan H, et al. Solid lipid nanoparticle prepared by solvent diffusion method in a non reactor system. Colloids Surf B: Biointerfaces. 2008;61:132–7.

    Article  CAS  PubMed  Google Scholar 

  • Zaida Urbán M. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine. 2010;5:611–20.

    Google Scholar 

  • Zaida Urbán M, Adriana G, et al. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine. 2010;5:611–20.

    Google Scholar 

  • Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, S.A., Patel, D.M., Patel, J.K., Patel, D.H. (2021). Solvent Emulsification Evaporation and Solvent Emulsification Diffusion Techniques for Nanoparticles. In: Patel, J.K., Pathak, Y.V. (eds) Emerging Technologies for Nanoparticle Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-50703-9_12

Download citation

Publish with us

Policies and ethics