Skip to main content

Practical Approaches in M2 Macrophage Biology: Analysis, Pharmacology, and Didactical Interpretation of M2 Macrophage Functions

  • Chapter
  • First Online:
The M2 Macrophage

Part of the book series: Progress in Inflammation Research ((PIR,volume 86))

  • 823 Accesses

  • The original version of this chapter was revised: The original version of this chapter was inadvertently published with incomplete captions of Figs. 6 and 7 which has been updated now. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-50480-9_11

Abstract

This chapter overviews the practical aspects of M2 macrophage analysis, such as the work with various types of macrophages and the choice and analysis of M2 marker mRNA and proteins. M2 macrophages have biomedical impact, and pharmacological reprogramming of macrophage activation has gained attention in the past decade. In certain diseases the induction of M2 activation is a desired therapeutic aim, most importantly in metabolic diseases, where promoting M2 activation within metabolic organs is a tool to reduce chronic inflammation. Although inducing an M2 macrophage state is desired in chronic inflammatory diseases, the restoration of anticancer immunity requires the blockage of M2 activation. The pharmacology of M2 macrophage activation, and inhibition of M2 macrophage functions, are overviewed in this chapter. Finally, some didactic approaches are shown that have practical application in interpreting M2 macrophage functions and in aiding scientific communication and university teaching of the theory of M2 macrophage biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 17 September 2020

    The original version of chapter 10 in this book was inadvertently published with incomplete captions of Figs. 6 and 7. 8. The figure captions have now been corrected – image courtesy details are added at the end of the captions as given below.

Notes

  1. 1.

    William Shakespeare: Romeo and Juliet, Act 2, Scene 3, monologue of Friar Lawrence.

References

  1. Russell SW, Pace JL. Both the kind and magnitude of stimulus are important in overcoming the negative regulation of macrophage activation by PGE2. J Leukoc Biol. 1984;35:291–301.

    Article  CAS  PubMed  Google Scholar 

  2. Bourette RP, Mouchiroud G. The biological role of interferon-inducible P204 protein in the development of the mononuclear phagocyte system. Front Biosci. 2008;13:879–86.

    Article  CAS  PubMed  Google Scholar 

  3. Luan Y, Lengyel P, Liu C-J. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev. 2008;19:357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waqas SFH, Hoang A, Lin Y, Ampem G, Röszer T, et al. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J Clin Invest. 2017;127:2842–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choubey D, Panchanathan R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett. 2008;119:32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chunfa L, Xin S, Qiang L, Sreevatsan S, Yang L, Zhao D, Zhou X. The central role of IFI204 in IFN-β release and autophagy activation during Mycobacterium bovis infection. Front Cell Infect Microbiol. 2017;7

    Google Scholar 

  7. Dauffy J, Mouchiroud G, Bourette RP. The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol. 2006;79:173–83.

    Article  CAS  PubMed  Google Scholar 

  8. Salo RJ, Bleam DK, Greer VL, Ortega AP. Interferon production in murine macrophage-like cell lines. J Leukoc Biol. 1985;37:395–406.

    Article  CAS  PubMed  Google Scholar 

  9. Smith ER, Jones PL, Boss JM, Merrill AH. Changing J774A.1 cells to new medium perturbs multiple signaling pathways, including the modulation of protein kinase C by endogenous sphingoid bases. J Biol Chem. 1997;272:5640–6.

    Article  CAS  PubMed  Google Scholar 

  10. Lam J, Herant M, Dembo M, Heinrich V. Baseline mechanical characterization of J774 macrophages. Biophys J. 2009;96:248–54.

    Article  CAS  PubMed  Google Scholar 

  11. Dietz JN, Cole BC. Direct activation of the J774.1 Murine macrophage cell line by mycoplasma arthritidis. Infect Immun. 1982;37:811–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindl T, Steubing R. Atlas of living cell cultures. Hoboken: Wiley-Blackwell; 2013.

    Book  Google Scholar 

  13. Circadian Expression Profiles Database (CircaDB). http://circadb.hogeneschlab.org/.

  14. Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41:D1009–13.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5:e1000442–e1000442.

    Google Scholar 

  16. Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–72.

    Article  CAS  Google Scholar 

  17. Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, Rygiel T, Król M. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One. 2018;13:e0198943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chamberlain LM, Holt-Casper D, Gonzalez-Juarrero M, Grainger DW. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A. 2015;103:2864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JK, Tansey MG. Microglia isolation from adult mouse brain. Methods Mol Biol. 2013;1041:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li PZ, Li JZ, Li M, Gong JP, He K. An efficient method to isolate and culture mouse Kupffer cells. Immunol Lett. 2014;158:52–6.

    Article  CAS  PubMed  Google Scholar 

  21. Cho KW, Morris DL, Lumeng CN. Flow cytometry analyses of adipose tissue macrophages. Methods Enzymol. 2014;537:297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engwall KS, Li AP. Isolation and culturing of rat pulmonary alveolar macrophages. J Tissue Cult Methods. 1983;8:91–4.

    Article  Google Scholar 

  23. Orr JS, Kennedy AJ, Hasty AH. Isolation of adipose tissue immune cells. J Vis Exp. 2013:e50707–e50707.

    Google Scholar 

  24. Yu H, Dilbaz S, Coßmann J, Hoang AC, Diedrich V, Herwig A, Harauma A, Hoshi Y, Moriguchi T, Landgraf K, Körner A, Lucas C, Brodesser S, Balogh L, Thuróczy J, Karemore G, Kuefner MS, Park EA, Rapp C, Travers JB, Röszer T. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest. 2019;129:2485–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shaw DR, Griffin FM. Thioglycollate-elicited mouse peritoneal macrophages are less efficient than resident macrophages in antibody-dependent cell-mediated cytolysis. J Immunol. 1982;128:433–40.

    CAS  PubMed  Google Scholar 

  26. Weischenfeldt J, Porse B. Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protocols 2008, pdb.prot5080. 2008.

    Google Scholar 

  27. Pavlou S, Wang L, Xu H, Chen M. Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. J Inflamm. 2017;14:4.

    Article  CAS  Google Scholar 

  28. Norris PC, Dennis EA. A lipidomic perspective on inflammatory macrophage eicosanoid signaling. Adv Biol Regul. 2014;54:99–110.

    Article  CAS  PubMed  Google Scholar 

  29. Andreu N, Phelan J, de Sessions PF, Cliff JM, Clark TG, Hibberd ML. Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Sci Rep. 2017;7:42225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramond E, Jamet A, Coureuil M, Charbit A. Pivotal role of mitochondria in macrophage response to bacterial pathogens. Front Immunol. 2019;10:2461–2461.

    Google Scholar 

  31. Grosick R, Alvarado-Vazquez PA, Messersmith AR, Romero-Sandoval EA. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Torres-Castro I, Arroyo-Camarena Ú, Martínez-Reyes C, Gómez-Arauz A, Dueñas-Andrade Y, Ruiz J, Béjar Y, Zaga-Clavellina V, Morales-Montor J, Terrazas L, Kzhyshkowska J, Escobedo G. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 2016;176:181–9.

    Article  CAS  Google Scholar 

  33. Van Den Bogert C, Spelbrink JN, Dekker HL. Relationship between culture conditions and the dependency on mitochondrial function of mammalian cell proliferation. J Cell Physiol. 1992;152:632–8.

    Article  PubMed  Google Scholar 

  34. Kos M, Kuebler JF, Jesch NK, Vieten G, Bax NM, van der Zee DC, Busche R, Ure BM. Carbon dioxide differentially affects the cytokine release of macrophage subpopulations exclusively via alteration of extracellular pH. Surg Endosc Other Interv Tech. 2006;20:570–6.

    Article  CAS  Google Scholar 

  35. Qiu W, Liu S, Chen J, Hu L, Wu M, Yang M. The primary culture of carp (Cyprinus carpio) macrophages and the verification of its phagocytosis activity. In Vitro Cell Dev Biol Anim. 2016;52:10–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chanput W, Peters V, Wichers H. THP-1 and U937 cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The impact of food bioactives on health: in vitro and ex vivo models. Cham: Springer; 2015. p. 147–59.

    Google Scholar 

  37. Lund ME, To, J, O’Brien BA, Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 2016;430:64–70.

    Article  CAS  PubMed  Google Scholar 

  38. Jobe O, Kim J, Tycksen E, Onkar S, Michael NL, Alving CR, Rao M. Human primary macrophages derived in vitro from circulating monocytes comprise adherent and non-adherent subsets with differential expression of Siglec-1 and CD4 and permissiveness to HIV-1 infection. Front Immunol. 2017;8:1352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Czystowska-Kuzmicz M, Sosnowska A, Nowis D, Ramji K, Szajnik M, Chlebowska-Tuz J, Wolinska E, Gaj P, Grazul M, Pilch Z, Zerrouqi A, Graczyk-Jarzynka A, Soroczynska K, Cierniak S, Koktysz R, Elishaev E, Gruca S, Stefanowicz A, Blaszczyk R, Borek B, Gzik A, Whiteside T, Golab J. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10:3000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goren I, Pfeilschifter J, Frank S. Uptake of neutrophil-derived ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing. Am J Pathol. 2014;184:3249–61.

    Article  CAS  PubMed  Google Scholar 

  41. Röszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm. 2015;2015:16.

    Article  CAS  Google Scholar 

  42. Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem. 2002;277:42821–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dzik JM. Evolutionary roots of arginase expression and regulation. Front Immunol. 2014;5:544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158:638–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller U, Stenzel W, Kohler G, Werner C, Polte T, Hansen G, Schutze N, Straubinger RK, Blessing M, McKenzie AN, Brombacher F, Alber G. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol. 2007;179:5367–77.

    Article  PubMed  Google Scholar 

  46. Stempin CC, Dulgerian LR, Garrido VV, Cerban FM. Arginase in parasitic infections: macrophage activation, immunosuppression, and intracellular signals. J Biomed Biotechnol. 2010;2010:683485.

    PubMed  Google Scholar 

  47. Ahn M, Yang W, Kim H, Jin JK, Moon C, Shin T. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res. 2012;1453:77–86.

    Article  CAS  PubMed  Google Scholar 

  48. Spittau B, Wullkopf L, Zhou X, Rilka J, Pfeifer D, Krieglstein K. Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia. 2013;61:287–300.

    Article  PubMed  Google Scholar 

  49. Li B, Alli R, Vogel P, Geiger TL. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 2014;7:869–78.

    Article  CAS  PubMed  Google Scholar 

  50. Singh V, Kumar M, San Yeoh B, Xiao X, Saha P, Kennett MJ, Vijay-Kumar M. Inhibition of interleukin-10 signaling induces microbiota-dependent chronic colitis in apolipoprotein E deficient mice. Inflamm Bowel Dis. 2016;22:841–52.

    Article  PubMed  Google Scholar 

  51. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, Mascanfroni ID, Al Adham Z, Lavoie S, Ibourk M, Nguyen DD, Samsom JN, Escher JC, Somech R, Weiss B, Beier R, Conklin LS, Ebens CL, Santos FGMS, Ferreira AR, Sherlock M, Bhan AK, Müller W, Mora JR, Quintana FJ, Klein C, Muise AM, Horwitz BH, Snapper SB. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40:706–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ranganathan PV, Jayakumar C, Ramesh G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Renal Physiol. 2013;304:F948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM Jr, Gause WC, Leibovich SJ, Hasko G. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26:376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawanaka N, Taylor AW. Localized retinal neuropeptide regulation of macrophage and microglial cell functionality. J Neuroimmunol. 2011;232:17–25.

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Liu J, Meng J, Lu C, Li X, Wang E, Shan F. Macrophage polarization induced by neuropeptide methionine enkephalin (MENK) promotes tumoricidal responses. Cancer Immunol Immunother. 2012;61:1755–68.

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Copland DA, Horie S, Wu WK, Chen M, Xu Y, Paul Morgan B, Mack M, Xu H, Nicholson LB, Dick AD. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice. PLoS One. 2013;8:e72935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hegyi B, Kornyei Z, Ferenczi S, Fekete R, Kudlik G, Kovacs KJ, Madarasz E, Uher F. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2014;23:2600–12.

    Article  CAS  PubMed  Google Scholar 

  58. Jung SH, Saxena A, Kaur K, Fletcher E, Ponemone V, Nottingham JM, Sheppe JA, Petroni M, Greene J, Graves K, Baliga MS, Fayad R. The role of adipose tissue-associated macrophages and T lymphocytes in the pathogenesis of inflammatory bowel disease. Cytokine. 2013;61:459–68.

    Article  CAS  PubMed  Google Scholar 

  59. Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol. 2005;174:6561–2.

    Article  CAS  PubMed  Google Scholar 

  60. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GG. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol. 2002;71:597–602.

    CAS  PubMed  Google Scholar 

  61. Arora S, Hernandez Y, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J Immunol. 2005;174:6346–56.

    Article  CAS  PubMed  Google Scholar 

  62. Chang NC, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH, Chang AC. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem. 2001;276:17497–506.

    Article  CAS  PubMed  Google Scholar 

  63. Guo L, Johnson RS, Schuh JC. Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice. J Biol Chem. 2000;275:8032–7.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao J, Lv Z, Wang F, Wei J, Zhang Q, Li S, Yang F, Zeng X, Wu X, Wu Z. Ym1, an eosinophilic chemotactic factor, participates in the brain inflammation induced by Angiostrongylus cantonensis in mice. Parasitol Res. 2013;112:2689–95.

    Article  PubMed  Google Scholar 

  65. Harbord M, Novelli M, Canas B, Power D, Davis C, Godovac-Zimmermann J, Roes J, Segal AW. Ym1 is a neutrophil granule protein that crystallizes in p47phox-deficient mice. J Biol Chem. 2002;277:5468–75.

    Article  CAS  PubMed  Google Scholar 

  66. Waern I, Jia J, Pejler G, Zcharia E, Vlodavsky I, Li JP, Wernersson S. Accumulation of Ym1 and formation of intracellular crystalline bodies in alveolar macrophages lacking heparanase. Mol Immunol. 2010;47:1467–75.

    Article  CAS  PubMed  Google Scholar 

  67. Nio J, Fujimoto W, Konno A, Kon Y, Owhashi M, Iwanaga T. Cellular expression of murine Ym1 and Ym2, chitinase family proteins, as revealed by in situ hybridization and immunohistochemistry. Histochem Cell Biol. 2004;121:473–82.

    Article  CAS  PubMed  Google Scholar 

  68. Ward JM, Yoon M, Anver MR, Haines DC, Kudo G, Gonzalez FJ, Kimura S. Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am J Pathol. 2001;158:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hung SI, Chang AC, Kato I, Chang NC. Transient expression of Ym1, a heparin-binding lectin, during developmental hematopoiesis and inflammation. J Leukoc Biol. 2002;72:72–82.

    CAS  PubMed  Google Scholar 

  70. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol. 2005;142:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dupasquier M, Stoitzner P, Wan H, Cerqueira D, van Oudenaren A, Voerman JS, Denda-Nagai K, Irimura T, Raes G, Romani N, Leenen PJ. The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J Leukoc Biol. 2006;80:838–49.

    Article  CAS  PubMed  Google Scholar 

  73. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, Zlabinger GJ, Stulnig TM. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes. 2007;31:1420–8.

    Article  CAS  Google Scholar 

  74. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clement K. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94:4619–23.

    Article  CAS  PubMed  Google Scholar 

  75. Haase J, Weyer U, Immig K, Kloting N, Bluher M, Eilers J, Bechmann I, Gericke M. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57:562–71.

    Article  CAS  PubMed  Google Scholar 

  76. Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E, Martinez-Clemente M, Arroyo V, Claria J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187:5408–18.

    Article  CAS  PubMed  Google Scholar 

  77. Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, Lash GE, Jenmalm MC, Ernerudh J. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015;194:1534–44.

    Article  CAS  PubMed  Google Scholar 

  78. Bellon T, Martinez V, Lucendo B, del Peso G, Castro MJ, Aroeira LS, Rodriguez-Sanz A, Ossorio M, Sanchez-Villanueva R, Selgas R, Bajo MA. Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrol Dial Transplant. 2011;26:2995–3005.

    Article  CAS  PubMed  Google Scholar 

  79. Medbury HJ, James V, Ngo J, Hitos K, Wang Y, Harris DC, Fletcher JP. Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol. 2013;32:74–84.

    CAS  PubMed  Google Scholar 

  80. Tang Z, Niven-Fairchild T, Tadesse S, Norwitz ER, Buhimschi CS, Buhimschi IA, Guller S. Glucocorticoids enhance CD163 expression in placental Hofbauer cells. Endocrinology. 2013;154:471–82.

    Article  CAS  PubMed  Google Scholar 

  81. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes. 2010;59:1171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011;187:3671–82.

    Article  CAS  PubMed  Google Scholar 

  83. Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012;189:3508–20.

    Article  CAS  PubMed  Google Scholar 

  84. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216:15–24.

    Article  CAS  PubMed  Google Scholar 

  85. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013;8:e80908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stutz AM, Pickart LA, Trifilieff A, Baumruker T, Prieschl-Strassmayr E, Woisetschlager M. The Th2 cell cytokines IL-4 and IL-13 regulate found in inflammatory zone 1/resistin-like molecule alpha gene expression by a STAT6 and CCAAT/enhancer-binding protein-dependent mechanism. J Immunol. 2003;170:1789–96.

    Article  PubMed  Google Scholar 

  87. Pepe G, Calderazzi G, De Maglie M, Villa A, Vegeto E. Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. J Neuroinflammation. 2014;11:1031.

    Article  CAS  Google Scholar 

  88. Pesce JT, Ramalingam TR, Wilson MS, Mentink-Kane MM, Thompson RW, Cheever AW, Urban JF Jr, Wynn TA. Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 2009;5:e1000393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nair MG, Du Y, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M, Swain GP, Yancopoulos GD, Valenzuela DM, Murphy A, Karow M, Stevens S, Pearce EJ, Artis D. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. J Exp Med. 2009;206:937–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Relloso M, Puig-Kroger A, Pello OM, Rodriguez-Fernandez JL, de la Rosa G, Longo N, Navarro J, Munoz-Fernandez MA, Sanchez-Mateos P, Corbi AL. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol. 2002;168:2634–43.

    Article  CAS  PubMed  Google Scholar 

  91. Gustafsson C, Mjosberg J, Matussek A, Geffers R, Matthiesen L, Berg G, Sharma S, Buer J, Ernerudh J. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One. 2008;3:e2078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kammerer U, Eggert AO, Kapp M, McLellan AD, Geijtenbeek TB, Dietl J, van Kooyk Y, Kampgen E. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol. 2003;162:887–96.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Preza GC, Tanner K, Elliott J, Yang OO, Anton PA, Ochoa MT. Antigen-presenting cell candidates for HIV-1 transmission in human distal colonic mucosa defined by CD207 dendritic cells and CD209 macrophages. AIDS Res Hum Retrovir. 2014;30:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fujisaka S, Usui I, Kanatani Y, Ikutani M, Takasaki I, Tsuneyama K, Tabuchi Y, Bukhari A, Yamazaki Y, Suzuki H, Senda S, Aminuddin A, Nagai Y, Takatsu K, Kobayashi M, Tobe K. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology. 2011;152:1789–99.

    Article  CAS  PubMed  Google Scholar 

  95. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia. 2012;60:717–27.

    Article  PubMed  Google Scholar 

  96. van Kooyk Y, Ilarregui JM, van Vliet SJ. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology. 2015;220:185–92.

    Article  PubMed  CAS  Google Scholar 

  97. Allavena P, Chieppa M, Bianchi G, Solinas G, Fabbri M, Laskarin G, Mantovani A. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol. 2010;2010:547179.

    Article  CAS  PubMed  Google Scholar 

  98. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2014;32C:21–7.

    Google Scholar 

  99. Lefevre L, Gales A, Olagnier D, Bernad J, Perez L, Burcelin R, Valentin A, Auwerx J, Pipy B, Coste A. PPARgamma ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS One. 2010;5:e12828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Okabe Y, Medzhitov R. How the immune system spots tumors. eLife. 2014;3:e04476.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Loures FV, Araujo EF, Feriotti C, Bazan SB, Costa TA, Brown GD, Calich VL. Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis. J Infect Dis. 2014;210:762–73.

    Article  CAS  PubMed  Google Scholar 

  102. Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, Wong SY. Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol. 2004;76:86–94.

    Article  CAS  PubMed  Google Scholar 

  103. Staples KJ, Hinks TS, Ward JA, Gunn V, Smith C, Djukanovic R. Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17. J Allergy Clin Immunol. 2012;130(1404–1412):e1407.

    Google Scholar 

  104. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.

    Article  CAS  PubMed  Google Scholar 

  105. Gong D, Shi W, Yi S-J, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31–31.

    Google Scholar 

  106. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Na Y-R, Yoon Y-N, Son D-I, Seok S-H. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One. 2013;8:e63451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008;180:2650–8.

    Article  CAS  PubMed  Google Scholar 

  109. Röszer T, Menendez-Gutierrez MP, Lefterova MI, Alameda D, Nunez V, Lazar MA, Fischer T, Ricote M. Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor gamma or retinoid X receptor alpha deficiency. J Immunol. 2011;186:621–31.

    Article  PubMed  CAS  Google Scholar 

  110. Nadella V, Wang Z, Johnson TS, Griffin M, Devitt A. Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. Biochim Biophys Acta. 2015;1853:201–12.

    Article  CAS  PubMed  Google Scholar 

  111. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ampem G, Azegrouz H, Bacsadi A, Balogh L, Schmidt S, Thuroczy J, Roszer T. Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell Tissue Res. 2016;363:461–78.

    Article  CAS  PubMed  Google Scholar 

  113. Karagianni AE, Kapetanovic R, Summers KM, McGorum BC, Hume DA, Pirie RS. Comparative transcriptome analysis of equine alveolar macrophages. Equine Vet J. 2017;49:375–82.

    Article  CAS  PubMed  Google Scholar 

  114. Hirosawa N, Uchida K, Kuniyoshi K, Murakami K, Inoue G, Miyagi M, Matsuura Y, Orita S, Inage K, Suzuki T, Takaso M, Ohtori S. Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model. J Orthop Res. 2018;36:2210–7.

    Article  CAS  Google Scholar 

  115. Smith KA, Pearson CB, Hachey AM, Xia DL, Wachtman LM. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp Med. 2012;62:303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen C, Perry TL, Chitko-McKown CG, Smith AD, Cheung L, Beshah E, Urban JF, Dawson HD. The regulatory actions of retinoic acid on M2 polarization of porcine macrophages. Dev Comp Immunol. 2019;98:20–33.

    Article  CAS  PubMed  Google Scholar 

  117. Herrmann I, Gotovina J, Fazekas-Singer J, Fischer MB, Hufnagl K, Bianchini R, Jensen-Jarolim E. Canine macrophages can like human macrophages be in vitro activated toward the M2a subtype relevant in allergy. Dev Comp Immunol. 2018;82:118–27.

    Article  CAS  PubMed  Google Scholar 

  118. Heinrich F, Lehmbecker A, Raddatz B, Kegler K, Tipold A, Stein V, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R, Spitzbarth I. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro. PLoS One. 2017;12:e0183572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Beirão BCB, Raposo T, Pang LY, Argyle DJ. Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2. BMC Vet Res. 2015;11:151.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Röszer T, Menendez-Gutierrez MP, Cedenilla M, Ricote M. Retinoid X receptors in macrophage biology. Trends Endocrinol Metab. 2013;24(9):460–8.

    Article  PubMed  CAS  Google Scholar 

  121. Gonzalez AN, Hidalgo A. Nuclear receptors and clearance of apoptotic cells: stimulating the macrophage’s appetite. Front Immunol. 2014;5:211.

    Article  CAS  Google Scholar 

  122. Gonzalez AN, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31:245–58.

    Article  CAS  Google Scholar 

  123. Sarang Z, Garabuczi E, Joos G, Kiss B, Toth K, Ruhl R, Szondy Z. Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiology. 2013;218:1354–60.

    Article  CAS  PubMed  Google Scholar 

  124. Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK, Folian B, Subramaniam S, Gonzalez FJ, Glass CK, Ricote M. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest. 2007;117:1658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Menendez-Gutierrez MP, Röszer T, Ricote M. Biology and therapeutic applications of peroxisome proliferator-activated receptors. Curr Top Med Chem. 2012;12:548–84.

    Article  CAS  PubMed  Google Scholar 

  126. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M, Kobayashi M, Tobe K. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Matsutani T, Tamura K, Kutsukake M, Matsuda A, Tachikawa E, Uchida E. Impact of pioglitazone on macrophage dynamics in adipose tissues of cecal ligation and puncture-treated mice. Biol Pharm Bull. 2017;40:638–44.

    Article  CAS  PubMed  Google Scholar 

  128. Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, Hinshaw JC, Prestwich GD, Hilaire AS, Prescott SM, Zimmerman GA, McIntyre TM. Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem. 2001;276:16015–23.

    Article  CAS  PubMed  Google Scholar 

  129. Tian Y, Yang C, Yao Q, Qian L, Liu J, Xie X, Ma W, Nie X, Lai B, Xiao L, Wang N. Procyanidin B2 activates PPARγ to induce M2 polarization in mouse macrophages. Front Immunol. 2019;10:1895–1895.

    Google Scholar 

  130. Kiss-Toth E, Röszer T. PPARgamma in kidney physiology and pathophysiology. PPAR Res. 2008;2008:183108.

    Article  PubMed  Google Scholar 

  131. Fuentes L, Röszer T, Ricote M. Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages. Mediat Inflamm. 2010;2010:219583.

    Article  CAS  Google Scholar 

  132. Goldstein JT, Berger AC, Shih J, Duke FF, Furst L, Kwiatkowski DJ, Cherniack AD, Meyerson M, Strathdee CA. Genomic activation of PPARG reveals a candidate therapeutic axis in bladder cancer. Cancer Res. 2017;77:6987–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7:496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim S-H, Hong SH, Park Y-J, Sung J-H, Suh W, Lee KW, Jung K, Lim C, Kim J-H, Kim H, Park KS, Park SG. MD001, a novel peroxisome proliferator-activated receptor α/γ agonist, improves glucose and lipid metabolism. Sci Rep. 2019;9:1656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Rebe C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessede G, Athias A, Steinmetz E, Lobaccaro JM, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D. Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res. 2009;105:393–401.

    Article  CAS  PubMed  Google Scholar 

  136. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bijsmans ITGW, Guercini C, Ramos Pittol JM, Omta W, Milona A, Lelieveld D, Egan DA, Pellicciari R, Gioiello A, van Mil SWC. The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep. 2015;5:14086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol. 2018;9:1853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Leussink S, Aranda-Pardos I, A-Gonzalez N. Lipid metabolism as a mechanism of immunomodulation in macrophages: the role of liver X receptors. Curr Opin Pharmacol. 2020;53:18–26.

    Article  CAS  PubMed  Google Scholar 

  140. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9:30.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hofkens W, Storm G, van den Berg W, van Lent P. Inhibition of M1 macrophage activation in favour of M2 differentiation by liposomal targeting of glucocorticoids to the synovial lining during experimental arthritis. Ann Rheum Dis. 2011;70:A40.

    Article  Google Scholar 

  142. Das LM, Binko AM, Traylor ZP, Peng H, Lu KQ. Vitamin D improves sunburns by increasing autophagy in M2 macrophages. Autophagy. 2019;15:813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Miyachi Y, Tsuchiya K, Shiba K, Mori K, Komiya C, Ogasawara N, Ogawa Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci Rep. 2018;8:16113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122:3209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175:2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Simkin J, Sammarco MC, Marrero L, Dawson LA, Yan M, Tucker C, Cammack A, Muneoka K. Macrophages are required to coordinate mouse digit tip regeneration. Development (Cambridge). 2017;144:3907–16.

    CAS  Google Scholar 

  147. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419–419.

    Google Scholar 

  148. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14:417–28.

    Article  CAS  PubMed  Google Scholar 

  149. Röszer T. Inflammation as death or life signal in diabetic fracture healing. Inflamm Res. 2011;60:3–10.

    Article  PubMed  CAS  Google Scholar 

  150. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20:857–69.

    Article  CAS  PubMed  Google Scholar 

  151. Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol. 2004;165:439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ploeger DTA, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 2013;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ley K. M1 means kill; M2 means heal. J Immunol. 2017;199:2191–3.

    Article  CAS  PubMed  Google Scholar 

  154. Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 2017;61:3–11.

    Article  CAS  PubMed  Google Scholar 

  155. O’Rourke SA, Dunne A, Monaghan MG. The role of macrophages in the infarcted myocardium: orchestrators of ECM remodeling. Front Cardiovasc Med. 2019;6:101–101.

    Google Scholar 

  156. Chamberlain CS, Clements AEB, Kink JA, Choi U, Baer GS, Halanski MA, Hematti P, Vanderby R. Extracellular vesicle-educated macrophages promote early Achilles tendon healing. Stem Cells. 2019;37:652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1:10–6.

    Article  Google Scholar 

  159. Röszer T, Jozsa T, Kiss-Toth ED, De Clerck N, Balogh L. Leptin receptor deficient diabetic (db/db) mice are compromised in postnatal bone regeneration. Cell Tissue Res. 2014;356:195–206.

    Article  PubMed  CAS  Google Scholar 

  160. Minutti CM, Jackson-Jones LH, García-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, Stamme C, Chroneos ZC, Zaiss DM, Casals C, Allen JE. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017;62:353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dai Y, Zhao X, Chen P, Yu Y, Wang Y, Xie L. Neuropeptide FF promotes recovery of corneal nerve injury associated with hyperglycemia. Invest Ophthalmol Vis Sci. 2015;56:7754–65.

    Article  CAS  PubMed  Google Scholar 

  163. Chiang B, Essick E, Ehringer W, Murphree S, Hauck MA, Li M, Chien S. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am J Surg. 2007;193:213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, Jin Y, Yuan L, Li B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019;2019:7132708.

    PubMed  PubMed Central  Google Scholar 

  165. Kämpfer H, Pfeilschifter J, Frank S. Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair. J Invest Dermatol. 2003;121:1544–51.

    Article  PubMed  Google Scholar 

  166. Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol. 2014;10:390–402.

    Article  CAS  PubMed  Google Scholar 

  167. Laurent P, Sisirak V, Lazaro E, Richez C, Duffau P, Blanco P, Truchetet M-E, Contin-Bordes C. Innate immunity in systemic sclerosis fibrosis: recent advances. Front Immunol. 2018;9:1702–1702.

    Google Scholar 

  168. He S, Xie L, Lu J, Sun S. Characteristics and potential role of M2 macrophages in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:3029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mueller TD, Zhang J-L, Sebald W, Duschl A. Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta Mol Cell Res. 2002;1592:237–50.

    Article  CAS  Google Scholar 

  170. Tomkinson A, Duez C, Cieslewicz G, Pratt JC, Joetham A, Shanafelt M-C, Gundel R, Gelfand EW. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J Immunol. 2001;166:5792–800.

    Article  CAS  PubMed  Google Scholar 

  171. Antoniu SA. Pitrakinra, a dual IL-4/IL-13 antagonist for the potential treatment of asthma and eczema. Curr Opin Investig Drugs. 2010;11:1286–94.

    CAS  PubMed  Google Scholar 

  172. Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A critical evaluation of anti-IL-13 and anti-IL-4 strategies in severe asthma. Int Arch Allergy Immunol. 2016;170:122–31.

    Article  CAS  PubMed  Google Scholar 

  173. Pennington EJ, Wechsler ME, Ortega VE. Chapter 9. Pharmacogenomics and applications to asthma management. In: Szefler SJ, Holguin F, Wechsler ME, editors. Personalizing asthma management for the clinician. St. Louis: Elsevier; 2018. p. 97–112.

    Chapter  Google Scholar 

  174. Kau AL, Korenblat PE. Anti-interleukin 4 and 13 for asthma treatment in the era of endotypes. Curr Opin Allergy Clin Immunol. 2014;14:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Simpson EL, Flohr C, Eichenfield LF, Bieber T, Sofen H, Taïeb A, Owen R, Putnam W, Castro M, DeBusk K, Lin C-Y, Voulgari A, Yen K, Omachi TA. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol. 2018;78:863–871.e811.

    Article  CAS  PubMed  Google Scholar 

  176. Jiménez-García L, Higueras MÁ, Herranz S, Hernández-López M, Luque A, de las Heras B, Hortelano S. A hispanolone-derived diterpenoid inhibits M2-macrophage polarization in vitro via JAK/STAT and attenuates chitin induced inflammation in vivo. Biochem Pharmacol. 2018;154:373–83.

    Article  PubMed  CAS  Google Scholar 

  177. Sahoo A, Alekseev A, Obertas L, Nurieva R. Grail controls Th2 cell development by targeting STAT6 for degradation. Nat Commun. 2014;5:4732.

    Article  CAS  PubMed  Google Scholar 

  178. Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, Jiang G, Zhang L, Gao C. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol. 2016;17:1342–51.

    Article  CAS  PubMed  Google Scholar 

  179. Wei C-Y, Zhu M-X, Yang Y-W, Zhang P-F, Yang X, Peng R, Gao C, Lu J-C, Wang L, Deng X-Y, Lu N-H, Qi F-Z, Gu J-Y. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol. 2019;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lee Y-Y, Wang C-T, Huang SK-H, Wu W-J, Huang C-N, Li C-C, Chan T-C, Liang P-I, Hsing C-H, Li C-F. Downregulation of RNF128 predicts progression and poor prognosis in patients with urothelial carcinoma of the upper tract and urinary bladder. J Cancer. 2016;7:2187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Seroogy CM, Soares L, Ranheim EA, Su L, Holness C, Bloom D, Fathman CG. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 2004;173:79–85.

    Article  CAS  PubMed  Google Scholar 

  182. Su LL, Iwai H, Lin JT, Fathman CG. The transmembrane E3 ligase GRAIL ubiquitinates and degrades CD83 on CD4 T cells. J Immunol. 2009;183:438–44.

    Article  CAS  PubMed  Google Scholar 

  183. Gao J, Wang Y, Yang J, Zhang W, Meng K, Sun Y, Li Y, He Q-Y. RNF128 promotes invasion and metastasis via the EGFR/MAPK/MMP-2 pathway in esophageal squamous cell carcinoma. Cancers (Basel). 2019;11(6):840.

    Article  CAS  Google Scholar 

  184. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CMT, Pryer N, Daniel D, Hwang ES, Rugo HS, Coussens LM. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol. 2003;24:36–43.

    Article  CAS  PubMed  Google Scholar 

  186. Kundu N, Beaty TL, Jackson MJ, Fulton AM. Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. JNCI J Natl Cancer Inst. 1996;88:536–41.

    Article  CAS  PubMed  Google Scholar 

  187. Elise FS, Rosemary JA. TGF beta inhibition for cancer therapy. Curr Cancer Drug Targets. 2006;6:565–78.

    Article  Google Scholar 

  188. de Gramont A, Faivre S, Raymond E. Novel TGF-β inhibitors ready for prime time in onco-immunology. Onco Targets Ther. 2016;6:e1257453–e1257453.

    Google Scholar 

  189. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    Article  CAS  PubMed  Google Scholar 

  190. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21:49–59.

    Article  CAS  PubMed  Google Scholar 

  191. Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, Yang G, Lv Z, Wang X, Jin Y. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol. 2019;10:1998–1998.

    Google Scholar 

  192. Suriano F, Santini D, Perrone G, Amato M, Vincenzi B, Tonini G, Muda A, Boggia S, Buscarini M, Pantano F. Tumor associated macrophages polarization dictates the efficacy of BCG instillation in non-muscle invasive urothelial bladder cancer. J Exp Clin Cancer Res CR. 2013;32:87.

    Article  PubMed  Google Scholar 

  193. Lacerda Mariano L, Ingersoll MA. Bladder resident macrophages: mucosal sentinels. Cell Immunol. 2018;330:136–41.

    Article  CAS  PubMed  Google Scholar 

  194. Bose D, Banerjee S, Chatterjee N, Das S, Saha M, Saha KD. Inhibition of TGF-β induced lipid droplets switches M2 macrophages to M1 phenotype. Toxicol In Vitro. 2019;58:207–14.

    Article  CAS  PubMed  Google Scholar 

  195. Runtsch MC, O’Neill L. Itaconate inhibits alternative activation of macrophages by targeting Janus kinase 1. J Immunol. 2019;202:–58.11.

    Google Scholar 

  196. Li G, Liu D, Kimchi ET, Kaifi JT, Qi X, Manjunath Y, Liu X, Deering T, Avella DM, Fox T, Rockey DC, Schell TD, Kester M, Staveley-O’Carroll KF. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology. 2018;154:1024–1036. e1029.

    Article  CAS  PubMed  Google Scholar 

  197. Samper A, Herrera B. A study of the roughness of Gothic rose windows. Nexus Netw J. 2016;18:397–417.

    Article  Google Scholar 

  198. Duvernoy S. Baroque oval churches: innovative geometrical patterns in early modern sacred architecture. Nexus Netw J. 2015;17:425–56.

    Article  Google Scholar 

  199. Gasteiger G, D’Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun. 2017;9:111–25.

    Article  CAS  PubMed  Google Scholar 

  200. DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016;12:15–28.

    Article  CAS  PubMed  Google Scholar 

  202. Sang Y, Miller LC, Blecha F. Macrophage polarization in virus–host interactions. J Clin Cell Immunol. 2015;6(2):311.

    PubMed  PubMed Central  Google Scholar 

  203. Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:603.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Röszer, T. (2020). Practical Approaches in M2 Macrophage Biology: Analysis, Pharmacology, and Didactical Interpretation of M2 Macrophage Functions. In: The M2 Macrophage. Progress in Inflammation Research, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-030-50480-9_10

Download citation

Publish with us

Policies and ethics