Skip to main content

Advertisement

Log in

Macrophage polarization induced by neuropeptide methionine enkephalin (MENK) promotes tumoricidal responses

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate macrophages polarization induced by methionine enkephalin (MENK) that promotes tumoricidal responses in vivo and in vitro. Both phenotypic and functional activities of macrophages were assessed by the quantitative analysis of key surface molecules on macrophages with flow cytometry, immunofluorescent staining, and the production of cytokines with enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. Our results showed that MENK could down-regulate the expression of CD206 and the production of arginase-1 (the markers of alternatively activated (M2) macrophage) in tumor-associated macrophages in vivo, meanwhile it could significantly up-regulate the expression of CD64, MHC-II, and the production of induced nitric oxide synthase (the markers of classically activated (M1) macrophages). Furthermore, the studies on bone marrow-derived macrophages treated with MENK (10−12 M) in vitro had demonstrated that MENK could markedly increase tumoricidal activity. MENK could also enhance the release of reactive oxidant species and the production of interleukin-12p40, tumor necrosis factor-α, while decrease the production of interleukin-10. In conclusion, MENK could effectively induce M2 macrophages polarizing to M1 macrophages, sequentially to modulate the Th1 responses of the host immune system. Our results suggest that MENK might have great potential as a new therapeutic agent for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MENK:

Methionine enkephalin

OGF:

Opioid growth factor

TAM:

Tumor-associated macrophage

BMDMs:

Bone marrow-derived macrophages

GM-CSF:

Granulocyte macrophage colony stimulating factor

IL-4:

Interleukin-4

IL-12p40:

Interleukin-12p40

IL-10:

Interleukin-10

IFN-γ:

Interferon-γ

TNF-α:

Tumor necrosis factor-α

iNOS:

Induced nitric oxide synthase

Arg-1:

Arginase-1

ROS:

Reactive oxidant species

FCM:

Flow cytometry

RT-PCR:

Reverse transcriptase-polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Sharp BM (2006) Multiple opioid receptors on immune cells modulate intracellular signaling. Brain Behav Immun 20:9–14

    Article  PubMed  CAS  Google Scholar 

  2. Donahue RN, McLaughlin PJ, Zagon IS (2009) Cell proliferation of human ovarian cancer is regulated by the opioid growth factor-opioid growth factor receptor axis. Am J Physiol Regulatory Integrative Comp Physiol 296:R1716–R1725

    Article  CAS  Google Scholar 

  3. Zagon IS, Donahue RN, McLaughlin PJ (2009) opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regulatory Integrative Comp Physiol 297:R1154–R1161

    Article  CAS  Google Scholar 

  4. Piva M, Moreno JI, Jenkins FS, Smith JK, Thomas JL, Montgomery C, Wilson CB et al (2005) In vitro modulation of cytokine expression by enkephalin-derived peptide. Neuroimmuno-modulation 12:339–347

    Google Scholar 

  5. Zagon IS, Verderame MF, McLaughlin PJ (2002) The biology of the opioid growth factor receptor (OGFr). Brain Res Rev 38:351–376

    Article  PubMed  CAS  Google Scholar 

  6. Hatzoglou A, Kampa M, Castanas E (2005) Opioid–somatostatin interactions in regulating cancer cell growth. Frontiers in Bioscience 10:244–256

    Article  PubMed  CAS  Google Scholar 

  7. McLaughlin PJ, Stack BC, Braine KM, Ruda JD, Zagon IS (2004) Opioid growth factor (OGF) inhibition of a human squamous cell carcinoma of the head and neck in nude mice: dependency on the route of administration. Int J Oncol 24:227–232

    PubMed  CAS  Google Scholar 

  8. Zagon IS, Jaglowski JR, Verderame MF, Smith JP, Leure-duPree AE, McLaughlin PJ (2005) Combination chemotherapy with gemcitabine and biotherapy with opioid growth factor (OGF) enhances the growth inhibition of pancreatic adenocarcinoma. Cancer Chemother Pharmacol 56:510–520

    Article  PubMed  CAS  Google Scholar 

  9. Naito M (2008) Macrophage differentiation and function in health and disease. Pathol Int 58:143–155

    Article  PubMed  CAS  Google Scholar 

  10. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  PubMed  CAS  Google Scholar 

  11. Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  Google Scholar 

  12. Fengping S, Yanjie X, Ning W, Jingjuan M, Changlong L, Yiming M et al (2011) Functional modulation of the pathway between dendritic cells (DCs) and CD4+T cells by the neuropeptide: methionine enkephalin (MENK). Peptides 32:929–937

    Article  Google Scholar 

  13. Quidville V, Segond N, Pidoux E, Cohen R, Jullienne A, Lausson S (2004) Tumor growth inhibition by indomethacin in a mouse model of human medullary thyroid cancer: implication of cyclooxygenases and 15-hydroxyprostaglandin dehydrogenase. Endocrinology 145:2561–2571

    Article  PubMed  CAS  Google Scholar 

  14. El-Gazzar A, Perco P, Eckelhart E, Anees M, Sexl V, Mayer B et al (2010) Natural immunity enhances the activity of a DR5 agonistic antibody and carboplatin in the treatment of ovarian cancer. Mol Cancer Ther 9:1007–1018

    Article  PubMed  CAS  Google Scholar 

  15. Umemura N, Saio M, Suwa T, Kitoh Y, Juncheng B, Nonaka K et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukocyte Biology 83:1136–1144

    Article  CAS  Google Scholar 

  16. Kang L, Wei X, Qiang G, Zhenggang J, Ping W, Yan Y et al (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105:353–364

    Article  Google Scholar 

  17. Mittal R, Sukumaran SK, Selvaraj SK, Wooster DG, Babu MM, Schreiber AD et al (2010) Fcγ receptor I alpha chain (CD64) expression in macrophages is critical for the onset of meningitis by Escherichia coli K1. PLoS Pathog 6:e1001203

    Article  PubMed  Google Scholar 

  18. Wei W, Jing W, Sheng-fu D (2010) Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin 31:191–201

    Article  Google Scholar 

  19. Nicolas M, Derya U, Dan RL (2008) The differentiation of human TH-17 cells requires transforming growth factor-b and induction of the nuclear receptor RORγt. Nat Immunol 9(6):641–649

    Article  Google Scholar 

  20. Feng P, Yee KK, Rawson NE, Feldman LM, Feldman RS, Breslin PAS (2009) Immune cells of the human peripheral taste system: dominant dendritic cells and CD4 T-Cells. Brain Behav Immun 23:760–766

    Article  PubMed  CAS  Google Scholar 

  21. Martín L, Comalada M, Marti L, Closs EI, MacLeod CL, Río RM et al (2006) Granulocyte-macrophage colony-stimulating factor increases l-arginine transport through the induction of CAT2 in bone marrow-derived macrophages. Am J Physiol Cell Physiol 290:C1364–C1372

    Article  PubMed  Google Scholar 

  22. Sodhi A, Suresh A (1992) Production of reactive nitrogen intermediates by bone marrow-derived macrophages on treatment with cisplatin in vitro. Clin Exp Immunol 89:502–508

    Article  PubMed  CAS  Google Scholar 

  23. Stanojevića S, Vujićb V, Mitića K, Kuštrimović N, Jovanović VK, Miletić T et al (2008) Methionine-enkephalin modulation of hydrogen peroxide (H2O2) release by rat peritoneal macrophages involves different types of opioid receptors. Neuropeptides 42:147–158

    Article  Google Scholar 

  24. Vujićb V, Stanojevića S, Dimitrijević M (2004) Methionine-enkephalin stimulates hydrogen peroxide and nitric oxide production in rat peritoneal macrophage: interaction of μ, δ and κ opioid receptors. NeuroImmunoModulation 1:392–402

    Google Scholar 

  25. Vats D, Mukundan L, Odegaard JI, Lina Z, Smith KL, Morel CR et al (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4:13–24

    Article  PubMed  CAS  Google Scholar 

  26. Odegaard JI, Ricardo Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPAR controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  PubMed  CAS  Google Scholar 

  27. Kim K-R, Son E-W, Hee-Um S, Kim B-O, Rhee D-K, Pyo S (2003) Immune alterations in mice exposed to the herbicide simazine. J Toxicol Environ Health 66:1159–1173

    Article  CAS  Google Scholar 

  28. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    Article  PubMed  CAS  Google Scholar 

  29. Zagon IS, Donahue RN, McLaughlin PJ (2009) opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regulatory Integrative Comp Physiol 297:R1154–R1161

    Article  CAS  Google Scholar 

  30. Donahue RN, McLaughlin PJ, Zagon IS (2009) Cell proliferation of human ovarian cancer is regulated by the opioid growth factor-opioid growth factor receptor axis. Am J Physiol Regulatory Integrative Comp Physiol 296:R1716–R1725

    Article  CAS  Google Scholar 

  31. Smith JP, Bingaman SI, Mauger DT (2010) Opioid growth factor improves clinical benefit and survival in patients with advanced pancreatic Cancer. J Clinical Trials 2:37–48

    Google Scholar 

  32. McLaughlin PJ, Jaglowski JR (2005) Enhanced growth inhibition of squamous cell carcinoma of the head and neck by combination therapy of paclitaxel and opioid growth factor. Int J Oncol 26:809–816

    PubMed  CAS  Google Scholar 

  33. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  34. Al-Sarireh B, Eremin O (2000) Tumor-associated macrophages (TAMS): disordered function, immune suppression and pro-gressive tumor growth. J R Coll Surg Edinb 45:1–16

    PubMed  CAS  Google Scholar 

  35. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumor-associated macrophages are a distinct M2 polarised population promoting tumor progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  PubMed  CAS  Google Scholar 

  36. Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. JEM 203:2749–2761

    Article  CAS  Google Scholar 

  37. Leimgruber A, Berger C, Cortez-Retamozo V, Etzrodt M, Newton AP, Waterman P et al (2009) Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticlem. Neoplasia 11:459–468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science Foundation of China, No. 30771990 (to Fengping Shan) and China Liaoning provincial foundation for international collaboration, No. 2006305007 (to Fengping Shan).

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Liu, J., Meng, J. et al. Macrophage polarization induced by neuropeptide methionine enkephalin (MENK) promotes tumoricidal responses. Cancer Immunol Immunother 61, 1755–1768 (2012). https://doi.org/10.1007/s00262-012-1240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1240-6

Keywords

Navigation