Skip to main content

A Soft Robotic Model to Study the Effects of Stiffness on Fish-Like Undulatory Swimming

  • Chapter
  • First Online:
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems
  • 1689 Accesses

Abstract

Fish swim using a combination of active and passive movements. Active swimming is generated by muscles that produce an undulatory wave passing down the body of fish. The undulating body imparts momentum to the water and the fish moves forward. Passive movement, in contrast, occurs when fluid pushes on the body, resulting in undulatory motion without muscular involvement. Animals may simultaneously generate active movement while also experiencing the consequences of morphological characteristics such as fins that generate passive movement. Passive models of fish are easily manufactured, but not sufficiently complex to realistically model fish swimming. Hard robotic models can be active and complex, but they are difficult to design and manufacture. We have designed two soft robotic fish models (pneufish) using pneumatic actuators, or pneunets, that produce active swimming by deforming a central plastic backbone. This apparatus can have either a single pair of actuators (the duo model) on each side, or two pairs of pneumatic actuators per side forming a quad configuration. Using these active pneumatic models, we demonstrate an important interaction between activation frequency and stiffness, and that variable longitudinal stiffness between anterior and posterior pneunets can lead to an increase in thrust without simultaneously increasing lateral forces. Lateral forces are an unavoidable consequence of undulatory body motion, but can be reduced by appropriate phasing of body and fin motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alben, P.G. Madden, G.V. Lauder, The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4(13), 243–256 (2007). https://doi.org/10.1098/rsif.2006.0181

    Article  Google Scholar 

  2. J.D. Altringham, D.J. Ellerby, Fish swimming: patterns in muscle function. J. Exp. Biol. 202(23), 3397–3403 (1999)

    Google Scholar 

  3. D. Barrett, M.S. Triantafyllou, D. Yue, M. Grosenbaugh, M. Wolfgang, Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183–212 (1999). https://doi.org/10.1017/S0022112099005455

    Article  MathSciNet  MATH  Google Scholar 

  4. J.E. Colgate, K.M. Lynch, Mechanics and control of swimming: a review. IEEE J. Ocean. Eng. 29(3), 660–673 (2004). https://doi.org/10.1109/JOE.2004.833208

    Article  Google Scholar 

  5. O.M. Curet, N.A. Patankar, G.V. Lauder, M.A. MacIver, Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 6(2) (2011). https://doi.org/10.1088/1748-3182/6/2/026004

  6. E.G. Drucker, G.V. Lauder, Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integr. Comp. Biol. 42(2), 243–257 (2002). https://doi.org/10.1093/icb/42.2.243

    Article  Google Scholar 

  7. C.J. Esposito, J.L. Tangorra, B.E. Flammang, G.V. Lauder, A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. J. Exp. Biol. 215(1), 56–67 (2012). https://doi.org/10.1242/jeb.062711

    Article  Google Scholar 

  8. F. Fish, G.V. Lauder, Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38(1), 193–224 (2006). https://doi.org/10.1146/annurev.fluid.38.050304.092201. http://www.annualreviews.org/doi/10.1146/annurev.fluid.38.050304.092201

  9. F.E. Fish, G.V. Lauder, Control surfaces of aquatic vertebrates: active and passive design and function. J. Exp. Biol. 220(23), 4351–4363 (2017). https://doi.org/10.1242/jeb.149617. http://jeb.biologists.org/lookup/doi/10.1242/jeb.149617

  10. B. Flammang, G.V. Lauder, D.R. Troolin, T. Strand, Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proceedings. R. Soc. 278(1725), 3670–8 (2011). http://rspb.royalsocietypublishing.org/content/early/2011/05/04/rspb.2011.0489.short

    Google Scholar 

  11. B.E. Flammang, S. Alben, P.G. Madden, G.V. Lauder, Functional morphology of the fin rays of teleost fishes. J. Morphol. 274(9), 1044–1059 (2013). https://doi.org/10.1002/jmor.20161

    Article  Google Scholar 

  12. N. Gravish, G.V. Lauder, Robotics-inspired biology. J. Exp. Biol. 221(7), 1–8 (2018). https://doi.org/10.1242/jeb.138438. http://jeb.biologists.org/lookup/doi/10.1242/jeb.138438

  13. B.C. Jayne, G.V. Lauder, Are muscle fibers within fish myotomes activated synchronously? Patterns of recruitment within deep myomeric musculature during swimming in largemouth bass. J. Exp. Biol. 198(Pt 3), 805–15 (1995). http://www.ncbi.nlm.nih.gov/pubmed/9318580

    Google Scholar 

  14. A. Jusufi, D.M. Vogt, R.J. Wood, G.V. Lauder, Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model. Soft Rob. 4(3), 202–210 (2017). https://doi.org/10.1089/soro.2016.0053

    Article  Google Scholar 

  15. K. Katija, R.E. Sherlock, A.D. Sherman, B.H. Robison, New technology reveals the role of giant larvaceans in oceanic carbon cycling pp. 1–8 (2017)

    Google Scholar 

  16. G.V. Lauder, Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. Exp. Fluids 51(1), 23–35 (2011). https://doi.org/10.1007/s00348-009-0765-8

    Article  Google Scholar 

  17. G.V. Lauder, Fish locomotion: recent advances and new directions. Annu. Rev. Marine Sci. 7(1), 521–545 (2015). https://doi.org/10.1146/annurev-marine-010814-015614. http://www.annualreviews.org/doi/abs/10.1146/annurev-marine-010814-015614

  18. G.V. Lauder, P.G.A. Madden, Learning from fish: kinematics and experimental hydrodynamics for roboticists. Int. J. Autom. Comput. 3(4), 325–335 (2006). https://doi.org/10.1007/s11633-006-0325-0

    Article  Google Scholar 

  19. G.V. Lauder, E.J. Anderson, J. Tangorra, P.G. Madden, Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210(16), 2767–2780 (2007). https://doi.org/10.1242/jeb.000265

    Article  Google Scholar 

  20. G.V. Lauder, E.J. Anderson, J. Tangorra, P.G.A. Madden, Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210(16), 2767–2780 (2007). https://doi.org/10.1242/jeb.000265

    Article  Google Scholar 

  21. G.V. Lauder, B. Flammang, S. Alben, Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr. Comp. Biol. 52(5), 576–587 (2012). https://doi.org/10.1093/icb/ics096

    Article  Google Scholar 

  22. J.C. Liao, Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. J. Exp. Biol. 207(20), 3495–3506 (2004). https://doi.org/10.1242/jeb.01125

    Article  Google Scholar 

  23. G. Liu, Y. Ren, H. Dong, O. Akanyeti, J.C. Liao, G.V. Lauder, Computational analysis of vortex dynamics and performance enhancement due to body-fin and fin-fin interactions in fish-like locomotion. J. Fluid Mech. 829, 65–88 (2017). https://doi.org/10.1017/jfm.2017.533

    Article  MathSciNet  MATH  Google Scholar 

  24. J.H. Long Jr., Muscles, elastic energy, and the dynamics of body stiffness in swimming Eels. Am. Zool. 38(4), 771–792 (1998)

    Article  Google Scholar 

  25. J.H. Long, K.S. Nipper, J.H. Long Jr., K.S. Nipper, The importance of body stiffness in undulatory propulsion. Am. Zool. 36(6), 678–694 (1996). https://doi.org/10.1093/icb/36.6.678

    Article  Google Scholar 

  26. J.A. Long, G.C. Young, T. Holland, T.J. Senden, E.M.G. Fitzgerald, An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444(7116), 199–202 (2006). https://doi.org/10.1038/nature05243

    Article  Google Scholar 

  27. M.A. MacIver, E. Fontaine, J.W. Burdick, Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. IEEE J. Ocean. Eng. 29(3), 651–659 (2004). https://doi.org/10.1109/JOE.2004.833210

    Article  Google Scholar 

  28. M. McHenry, C. Pell, J.H. Long Jr., Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models. J. Exp. Biol. 198(Pt 11), 2293–305 (1995). http://www.ncbi.nlm.nih.gov/pubmed/9320209

    Google Scholar 

  29. K.M.W. Mcletchie, Drag reduction of an elastic fish model, in Oceans 2003. Celebrating the Past…Teaming Toward the Future (IEEE Cat. No. 03CH37492) vol. 5 (2003), pp. 2938–2944

    Google Scholar 

  30. A.P. Mignano, S. Kadapa, J.L. Tangorra, G.V. Lauder, Passing the wake: using multiple fins to shape forces for swimming. Biomimetics 4(1), 1–23 (2019). https://doi.org/10.3390/biomimetics4010023

    Article  Google Scholar 

  31. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides, Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  32. D.B. Quinn, G.V. Lauder, A.J. Smits, Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250–267 (2014). https://doi.org/10.1017/jfm.2013.597

    Article  Google Scholar 

  33. R Core Team: R: a language and environment for statistical computing (2013). http://www.r-project.org/

  34. R.E. Shadwick, S. Gemballa, Structure, kinematics, and muscle dynamics in undulatory swimming, in Fish Physiology, vol. 23 (Academic Press, San Diego, 2006), pp. 241–280. https://doi.org/10.1016/S1546-5098(05)23007-8

    Google Scholar 

  35. R.M. Shelton, P.J.M. Thornycroft, G.V. Lauder, Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. J. Exp. Biol. 217, 2110–20 (2014). https://doi.org/10.1242/jeb.098046. http://www.ncbi.nlm.nih.gov/pubmed/24625649

  36. A.J. Smits, Undulatory and oscillatory swimming. J. Fluid Mech. 1–70 (2019). https://doi.org/10.1017/jfm.2019.284

  37. E.D. Tytell, Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. J. Exp. Biol. 209(8), 1516–1534 (2006). https://doi.org/10.1242/jeb.02154

    Article  Google Scholar 

  38. E.D. Tytell, E.M. Standen, G.V. Lauder, Escaping flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. J. Exp. Biol. 211(2), 187–195 (2008). https://doi.org/10.1242/jeb.008128

    Article  Google Scholar 

  39. E.D. Tytell, C.Y. Hsu, T.L. Williams, A.H. Cohen, L.J. Fauci, Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Natl. Acad. Sci. 107(46), 19832–19837 (2010). https://doi.org/10.1073/pnas.1011564107

    Article  Google Scholar 

  40. W. Venables, B. Ripley, Modern Applied Statistics with S, 4th edn. (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  41. Z. Wolf, A. Jusufi, D. Vogt, G.V. Lauder, Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Bioinspir. Biomim. 15(4), 046008 (2020). https://doi.org/10.1088/1748-3190/ab8d0f

  42. J. Zhu, C. White, D.K. Wainwright, V. Di Santo, G.V. Lauder, H. Bart-Smith, Tuna robotics: a high-frequency experimental platform exploring the performance space of swimming fishes. Sci. Robot. 4(34), 1–12 (2019). https://doi.org/10.1126/scirobotics.aax4615

    Article  Google Scholar 

  43. M. Ziegler, M. Hoffmann, J.P. Carbajal, R. Pfeifer, Varying body stiffness for aquatic locomotion, in Proceedings – IEEE International Conference on Robotics and Automation, (2011), pp. 2705–2712

    Google Scholar 

  44. Y.J. Park, T.M. Huh, D. Park, K.J. Cho, Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot. Bioinspir. Biomim. 9(3), 036002 (2014). https://doi.org/10.1088/1748-3182/9/3/036002

  45. K. Li, H. Jiang, S. Wang, J. Yu, A soft robotic fish with variable-stiffness decoupled mechanisms. J. Bio. Eng. 15(4), 599–609 (2018). https://doi.org/10.1007/s42235-018-0049-1

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Ardian Jusifi, Daniel Vogt, and members of the Lauder Lab for assistance with this project and ongoing collaborative research on fish robotics and locomotion. Mackerel swimming kinematic data in Fig. 8.1 were obtained by Dr. Valentina Di Santo. This research was supported by the Department of Organismic and Evolutionary Biology at Harvard University, the Ashford Foundation, and the Office of Naval Research (Tom McKenna, Program Manager, ONR 341), grant number N00014-15-1-2234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zane Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolf, Z., Lauder, G.V. (2021). A Soft Robotic Model to Study the Effects of Stiffness on Fish-Like Undulatory Swimming. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_8

Download citation

Publish with us

Policies and ethics