Skip to main content

The Role of TGF-β in Post-traumatic Osteoarthritis

  • Chapter
  • First Online:
Post-Traumatic Arthritis
  • 433 Accesses

Abstract

Traumatic injury to the joint predisposes the development of osteoarthritis (OA). Post-traumatic OA (PTOA) shares the common clinical symptom and pathological alterations with nontraumatic OA, except for the etiology. Surgical reconstruction of the joint components fails to successfully prevent the development of PTOA, and there is no effective therapy for this disease currently available. Transforming growth factor-beta (TGF-β), a multifunctional cytokine, has been found to play an essential role in the pathological process of PTOA. Injury destroys the normal kinematics relationship among the joint components. Excessive TGF-βs are activated in the subchondral bone during osteoclast bone resorption in response to the altered mechanical environment. Excessive activation of TGF-β leads to uncoupled bone remodeling and increased angiogenesis and fibrosis, which eventually results in alterations of micro-architecture and mechanical property in the subchondral bone. The impaired capability of the subchondral bone to dissipate the loading from the joint surface aggravates the degeneration of articular cartilage. The maintenance of TGF-β levels within the normal range is also critical for the homeostasis of articular cartilage. TGF-β is an important anabolic factor that induces chondrocytes proliferation and promotes the synthesis of matrix protein. However, high levels of TGF-β are detrimental to the functional and structural integrity of articular cartilage. Elevated levels of TGF-β have been identified in the synovial system of PTOA joints. TGF-β may primarily serve as a pro-inflammatory factor in the synovium by augmenting the secretion of inflammatory factors by the immune cells. Because the effects of TGF-β may differ according to tissue type within the joint and may vary at different time points, differential and tissue-specific treatments targeting TGF-β signaling may produce optimal therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull. 2011;97:47–80. https://doi.org/10.1093/bmb/ldq026.

    Article  PubMed  Google Scholar 

  2. Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention. Best Pract Res Clin Rheumatol. 2014;28:17–30. https://doi.org/10.1016/j.berh.2014.02.001.

    Article  PubMed  Google Scholar 

  3. Hunter D. Osteoarthritis. Best Pract Res Clin Rheumatol. 2011;25:801–14. https://doi.org/10.1016/j.berh.2011.11.008.

    Article  PubMed  Google Scholar 

  4. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep. 2014;16:448. https://doi.org/10.1007/s11926-014-0448-1.

    Article  PubMed  Google Scholar 

  5. Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011;7:43–9. https://doi.org/10.1038/nrrheum.2010.197.

    Article  CAS  PubMed  Google Scholar 

  6. Zhen G, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19:704–12. https://doi.org/10.1038/nm.3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol. 1998;10:256–62.

    Article  CAS  Google Scholar 

  8. Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4:249–58. https://doi.org/10.1177/1759720X12437353.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Massague J. TGF-beta signaling in development and disease. FEBS Lett. 2012;586:1833. https://doi.org/10.1016/j.febslet.2012.05.030.

    Article  CAS  PubMed  Google Scholar 

  10. Cupp AS, Kim G, Skinner MK. Expression and action of transforming growth factor beta (TGFbeta1, TGFbeta2, and TGFbeta3) during embryonic rat testis development. Biol Reprod. 1999;60:1304–13.

    Article  CAS  Google Scholar 

  11. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116:217–24.

    Article  CAS  Google Scholar 

  12. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev. 2000;11:59–69.

    Article  CAS  Google Scholar 

  13. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71. https://doi.org/10.1038/37284.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39. https://doi.org/10.1038/cr.2008.328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8. https://doi.org/10.1056/NEJM200005043421807.

    Article  CAS  PubMed  Google Scholar 

  16. Kalinina NI, Sysoeva VY, Rubina KA, Parfenova YV, Tkachuk VA. Mesenchymal stem cells in tissue growth and repair. Acta Nat. 2011;3:30–7.

    Article  CAS  Google Scholar 

  17. Tang Y, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65. https://doi.org/10.1038/nm.1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80. https://doi.org/10.1016/j.ajpath.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stone RC, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506. https://doi.org/10.1007/s00441-016-2464-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loughlin J. Genetics of osteoarthritis. Curr Opin Rheumatol. 2011;23:479–83. https://doi.org/10.1097/BOR.0b013e3283493ff0.

    Article  PubMed  Google Scholar 

  21. Vinatier C, et al. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther. 2009;4:318–29.

    Article  CAS  Google Scholar 

  22. Shen J, et al. Deletion of the transforming growth factor beta receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum. 2013;65:3107–19. https://doi.org/10.1002/art.38122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, et al. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153:35–46.

    Article  CAS  Google Scholar 

  24. Morales TI, Joyce ME, Sobel ME, Danielpour D, Roberts AB. Transforming growth factor-beta in calf articular cartilage organ cultures: synthesis and distribution. Arch Biochem Biophys. 1991;288:397–405.

    Article  CAS  Google Scholar 

  25. Maeda S, Dean DD, Gomez R, Schwartz Z, Boyan BD. The first stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3). Calcif Tissue Int. 2002;70:54–65. https://doi.org/10.1007/s002230010032.

    Article  CAS  PubMed  Google Scholar 

  26. Farquhar T, et al. Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res. 1996;14:417–23. https://doi.org/10.1002/jor.1100140312.

    Article  CAS  PubMed  Google Scholar 

  27. Hinz B. The extracellular matrix and transforming growth factor-beta1: tale of a strained relationship. Matrix Biol. 2015;47:54–65. https://doi.org/10.1016/j.matbio.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  28. Albro MB, et al. Shearing of synovial fluid activates latent TGF-beta. Osteoarthr Cartil. 2012;20:1374–82. https://doi.org/10.1016/j.joca.2012.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthritis Rheum. 2007;56:3706–14. https://doi.org/10.1002/art.23024.

    Article  CAS  PubMed  Google Scholar 

  30. Serra R, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol. 1997;139:541–52.

    Article  CAS  Google Scholar 

  31. van der Kraan PM, Blaney Davidson EN, van den Berg WB. A role for age-related changes in TGFbeta signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther. 2010;12:201. https://doi.org/10.1186/ar2896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goumans MJ, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell. 2003;12:817–28.

    Article  CAS  Google Scholar 

  33. van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 2012;347:257–65. https://doi.org/10.1007/s00441-011-1194-6.

    Article  CAS  PubMed  Google Scholar 

  34. Finnson KW, et al. Endoglin differentially regulates TGF-beta-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthr Cartil. 2010;18:1518–27. https://doi.org/10.1016/j.joca.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  35. Santander C, Brandan E. Betaglycan induces TGF-beta signaling in a ligand-independent manner, through activation of the p38 pathway. Cell Signal. 2006;18:1482–91. https://doi.org/10.1016/j.cellsig.2005.11.011.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez-Casillas F, et al. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell. 1991;67:785–95.

    Article  CAS  Google Scholar 

  37. Bizet AA, et al. The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors. Biochim Biophys Acta. 2011;1813:742–53. https://doi.org/10.1016/j.bbamcr.2011.01.028.

    Article  CAS  PubMed  Google Scholar 

  38. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19:18. https://doi.org/10.1186/s13075-017-1229-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fahlgren A, Andersson B, Messner K. TGF-beta1 as a prognostic factor in the process of early osteoarthrosis in the rabbit knee. Osteoarthr Cartil. 2001;9:195–202. https://doi.org/10.1053/joca.2000.0376.

    Article  CAS  PubMed  Google Scholar 

  40. Cameron ML, Fu FH, Paessler HH, Schneider M, Evans CH. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc. 1994;2:38–44.

    Article  CAS  Google Scholar 

  41. Yoshimura A, Muto G. TGF-beta function in immune suppression. Curr Top Microbiol Immunol. 2011;350:127–47. https://doi.org/10.1007/82_2010_87.

    Article  CAS  PubMed  Google Scholar 

  42. Gong D, et al. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31. https://doi.org/10.1186/1471-2172-13-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35. https://doi.org/10.1038/nri978.

    Article  CAS  PubMed  Google Scholar 

  44. Rosengren S, Corr M, Boyle DL. Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res Ther. 2010;12:R65. https://doi.org/10.1186/ar2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishii T, Tamura S, Shiomi T, Yoshikawa H, Sugano N. Alendronate treatment for hip osteoarthritis: prospective randomized 2-year trial. Clin Rheumatol. 2013;32:1759–66. https://doi.org/10.1007/s10067-013-2338-8.

    Article  PubMed  Google Scholar 

  46. Iannone F, Lapadula G. The pathophysiology of osteoarthritis. Aging Clin Exp Res. 2003;15:364–72.

    Article  CAS  Google Scholar 

  47. Qiu T, et al. TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol. 2010;12:224–34. https://doi.org/10.1038/ncb2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112:3491–501. https://doi.org/10.1002/jcb.23287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prisby R, et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res. 2011;26:2583–96. https://doi.org/10.1002/jbmr.459.

    Article  CAS  PubMed  Google Scholar 

  50. Orth P, et al. Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo. Osteoarthr Cartil. 2013;21:614–24. https://doi.org/10.1016/j.joca.2013.01.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhen, G., Cao, X. (2021). The Role of TGF-β in Post-traumatic Osteoarthritis. In: Thakkar, S.C., Hasenboehler, E.A. (eds) Post-Traumatic Arthritis. Springer, Cham. https://doi.org/10.1007/978-3-030-50413-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50413-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50412-0

  • Online ISBN: 978-3-030-50413-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics