Skip to main content
Log in

The pathophysiology of osteoarthritis

  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a complex disease whose pathogenesis includes the contribution of biomechanical and metabolic factors which, altering the tissue homeostasis of articular cartilage and subchondral bone, determine the predominance of destructive over productive processes. A key role in the pathophysiology of articular cartilage is played by cell/extra-cellular matrix (ECM) interactions, which are mediated by cell surface integrins. In a physiologic setting, integrins modulate cell/ECM signaling, essential for regulating growth and differentiation and maintaining cartilage homeostasis. During OA, abnormal integrin expression alters cell/ECM signaling and modifies chondrocyte synthesis, with the following imbalance of destructive cytokines over regulatory factors. IL-1, TNF-α and other pro-catabolic cytokines activate the enzymatic degradation of cartilage matrix and are not counterbalanced by adequate synthesis of inhibitors. The main enzymes involved in ECM breakdown are metalloproteinases (MMPs), which are sequentially activated by an amplifying cascade. MMP activity is partially inhibited by the tissue inhibitors of MMPs (TIMPs), whose synthesis is low compared with MMP production in OA cartilage. Intriguing is the role of growth factors such as TGF-β, IFG, BMP, NGF, and others, which do not simply repair the tissue damage induced by catabolic factors, but play an important role in OA pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poole AR, Billinghurst C, Nelson F. New perspectives in cartilage degeneration in osteoarthritis. Rheumatology in Europe 1995; 24: 57–65.

    Google Scholar 

  2. Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 1992; 4: 772–81.

    Article  PubMed  CAS  Google Scholar 

  3. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786–91.

    PubMed  CAS  Google Scholar 

  4. Durr J, Goodman S, Potocnik A, von der Mark H, von der Mark K. Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 1993; 207: 235–44.

    Article  PubMed  CAS  Google Scholar 

  5. Enomoto M, Leboy PS, Menko AS, Boettiger D. Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp Cell Res 1993; 205: 276–85.

    Article  PubMed  CAS  Google Scholar 

  6. Loeser RF, Carlson CS, McGee MP. Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp Cell Res 1995; 217: 248–57.

    Article  PubMed  CAS  Google Scholar 

  7. Ostergaard K, Salter DM, Petersen J, Bendtzen K, Hvolris J, Andersen CB. Expression of alpha and beta subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann Rheum Dis 1998; 57: 303–08.

    Article  PubMed  CAS  Google Scholar 

  8. Salter DM, Hughes DE, Simpson R, Gardner DL. Integrin expression by human articular chondrocytes. Br J Rheumatol 1992; 31: 231–4.

    Article  PubMed  CAS  Google Scholar 

  9. Woods VLJ, Schreck PJ, Gesink DS, et al. Integrin expression by human articular chondrocytes. Arthritis Rheum 1994; 37: 537–44.

    Article  PubMed  CAS  Google Scholar 

  10. Springer TA. Adhesion receptor of the immune system. Nature 1990; 346: 425–34.

    Article  PubMed  CAS  Google Scholar 

  11. Lee JW, Qi WN, Scully SP. The involvement of beta1 integrin in the modulation by collagen of chondrocyte-response to transforming growth factor-beta1. J Orthop Res 2002; 20: 66–75.

    Article  PubMed  CAS  Google Scholar 

  12. Shakibaei M, John T, de Souza P, Rahmanzadeh R, Merker HJ. Signal transduction by betal integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 1999; 342 Pt 3: 615–23.

    Article  Google Scholar 

  13. Cao L, Lee V, Adams ME, et al. Beta-integrin-collagen interaction reduces chondrocyte apoptosis. Matrix Biol 1999; 18: 343–55.

    Article  PubMed  CAS  Google Scholar 

  14. Lapadula G, Iannone F, Zuccaro C, et al. Integrin expression on chondrocytes; correlations with the degree of cartilage damage in human osteoarthritis. Clin Exp Rheumatol 1997; 15: 247–54.

    PubMed  CAS  Google Scholar 

  15. Lapadula G, Iannone F, Zuccaro C, et al. Chondrocyte phenotyping in human osteoarthritis. Clin Rheumatol 1998; 17: 99–104.

    Article  PubMed  CAS  Google Scholar 

  16. Lapadula G, Iannone F. Chondrocytes-ECM interactions in human osteoarthritis. Adv Exp Med Biol 1999; 455: 413–7.

    Article  PubMed  CAS  Google Scholar 

  17. Durr J, Goodman S, Potocnik A, von der Mark H, von der Mark K. Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 1993; 207: 235–44.

    Article  PubMed  CAS  Google Scholar 

  18. Shakibaei M, Merker HJ. Beta1-integrins in the cartilage matrix. Cell Tissue Res 1999; 296: 565–73.

    Article  PubMed  CAS  Google Scholar 

  19. Woods VL, Schreck PJ, Gesink DS, et al. Integrin expression by human articular chondrocytes. Arthritis Rheum 1994; 37: 537–44.

    Article  PubMed  CAS  Google Scholar 

  20. Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic. human articular chondrocytes. Arthritis Rheum 2000; 43: 2091–9.

    Article  CAS  Google Scholar 

  21. Kikuchi T, Sakuta T, Yamaguchi T. Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthritis Cartilage 1998; 6: 177–86.

    Article  PubMed  CAS  Google Scholar 

  22. Freemont AJ, Hampson V, Tilman R, Goupille P, Taiwo Y, Hoyland JA. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann Rheum Dis 1997; 56: 542–9.

    Article  PubMed  CAS  Google Scholar 

  23. Stremme S, Duerr S, Bau B, Schmid E, Aigner T. MMP-8 is only a minor gene product of human adult articular chondrocytes of the knee. Clin Exp Rheumatol 2003; 21: 205–9.

    PubMed  CAS  Google Scholar 

  24. Hembry RM, Bagga MR, Reynolds JJ, Hamblen DL. Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis 1995; 54: 25–32.

    Article  PubMed  CAS  Google Scholar 

  25. Okada Y, Shinmei M, Tanaka A, Naka K, Kimura A, Nakanishi I. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 1992; 66: 680–90.

    PubMed  CAS  Google Scholar 

  26. Mohtai M, Smith RL, Schurman DJ, Tsuji Y, Torti FM, Hutchinson NI. Expression of 92-kD type IV collagenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin-1. J Clin Invest 1993; 92: 179–85.

    Article  PubMed  CAS  Google Scholar 

  27. Dean DD, Azzo W, Martel Pelletier J, Pelletier JP, Woessner JFJ. Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J Rheumatol 1987; 14 (Special No.): 43–4.

    PubMed  CAS  Google Scholar 

  28. Kostoulas G, Lang A, Nagase H, Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett 1999; 455: 286–90.

    Article  PubMed  CAS  Google Scholar 

  29. Dodds RA, Gowen M. The growing osteophyte: a model system for the study of human bone development and remodelling in situ. J Histotechnol 1994; 17: 37–45.

    Google Scholar 

  30. Howell DS. Pathogenesis of osteoarthritis. Am J Med 1986; 80: 24–8.

    Article  PubMed  CAS  Google Scholar 

  31. Woessner JFJ, Gunja Smith Z. Role of metalloproteinases in human osteoarthritis. J Rheumatol Suppl 1991; 27: 99–101.

    PubMed  Google Scholar 

  32. van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 1995; 38: 164–72.

    Article  Google Scholar 

  33. Joosten LAB, Lubberts E, Durez P, et al. Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis. Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum 1997; 49: 249–60.

    Google Scholar 

  34. Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis: suppression of collagenase-1 expression. Arthritis Rheum 1996; 39: 1535–44.

    Article  PubMed  CAS  Google Scholar 

  35. Plows D, Probert L, Georgopoulos S, Alexoppoulos L, Kollias G. The role of tumor necrosis factor (TNF) in arthritis: studies in transgenic mice. Rheumatol Eur Suppl 1995; 2: 51–4.

    Google Scholar 

  36. Martel-Pelletier J, McCollum R, Fujimoto N, Obata K, Cloutier JM, Pelletier JP. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthrtis and rheumatoid arthritis. Lab Invest 1994; 70: 807–15.

    PubMed  CAS  Google Scholar 

  37. Slack J, McMahan CJ, Waugh S, et al. Independent binding of interleukin-1 alpha and interleukin-1 beta to type I and type II interleukin-1 receptors. J Biol Chem 1993; 268: 2513–24.

    PubMed  CAS  Google Scholar 

  38. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992; 13: 151–3.

    Article  PubMed  CAS  Google Scholar 

  39. Westacott CI, Atkins RM, Dieppe PA, Elson CJ. Tumor necrosis factor-alpha receptor expression on chondrocytes isolated from human articular cartilage. J Rheumatol 1994; 21: 1710–5.

    PubMed  CAS  Google Scholar 

  40. Martel-Pelletier J, McCollum R, Di Battista JA, Faure MP, Chin JA, Fournier S. The interleukin-1 receptor in normal and osteoarthritic human articular chondrocytes. Identification as the type I receptor and analysis of binding kinetics and biologic function. Arthritis Rheum 1992; 35: 530–40.

    CAS  Google Scholar 

  41. Sadouk M, Pelletier JP, Tardif G, Kiansa K, Cloutier JM, Martel-Pelletier J. Human synovial fibroblasts coexpress interleukin-1 receptor type I and type II mRNA: The increased level of the interleukin-1 receptor in osteoarthritic cells is related to an increased level of the type 1 receptor. Lab Invest 1995; 73: 347–55.

    PubMed  CAS  Google Scholar 

  42. Alaaeddine N, Di Battista JA, Pelletier JP, Cloutier JM, Kiansa K, Dupuis M. Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55 (TNF-R55) that mediates biological activation by TNF-alpha. J Rheumatol 1997; 24: 1985–94.

    PubMed  CAS  Google Scholar 

  43. Nietfeld JJ, Wilbrink B, Helle M, van Roy JL, den Otter W, Swaak AJ. Interleukin-1-induced interleukin-6 is required for the inhibition of proteoglycan synthesis by interleukin-1 in human articular cartilage. Arthritis Rheum 1990; 33: 1695–701.

    Article  PubMed  CAS  Google Scholar 

  44. Lotz M, Guerne PA. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity. J Biol Chem 1991; 266: 2017–20.

    PubMed  CAS  Google Scholar 

  45. Lotz M, Moats T, Villiger PM. Leukemia inhibitory factor is expressed in cartilage and synovium and can contribute to the pathogenesis of arthritis. J Clin Invest 1992; 90: 888–96.

    Article  PubMed  CAS  Google Scholar 

  46. Attur MG, Patel RN, Abramson SB, Amin AR. Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum 1997; 40: 1050–3.

    Article  PubMed  CAS  Google Scholar 

  47. Grabowski PS, Wright PK, Van-’t HR, Helfrich MH, Ohshima H, Ralston SH. Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br J Rheumatol 1997; 36: 651–5.

    Article  PubMed  CAS  Google Scholar 

  48. Amin AR, Abramson SB. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 1998; 10: 263–8.

    Article  PubMed  CAS  Google Scholar 

  49. Arend WP. Interleukin-1 receptor antagonist. Adv Immunol 1993; 54: 167–227.

    Article  PubMed  CAS  Google Scholar 

  50. Smith MD, Triantafillou S, Parker A, Youssef PP, Coleman M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 1997; 24: 365–71.

    PubMed  CAS  Google Scholar 

  51. Iannone F, De Bari C, Dell’Accio F, et al. Interleukin-10 and interleukin-10 receptor in human osteoarthritic and healthy chondrocytes. Clin Exp Rheumatol 2001; 19: 139–45.

    Article  PubMed  CAS  Google Scholar 

  52. Adams ME, Brandt KD. Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 1991; 18: 428–35.

    PubMed  CAS  Google Scholar 

  53. Middleton J, Manthey A, Tyler J. Insulin-like growth factor (IGF) receptor, IGF-I, interleukin-1 beta (L-1 beta), and IL-6 mRNA expression in osteoarthritic and normal human cartilage. J Histochem Cytochem 1996; 44: 133–41.

    Article  PubMed  CAS  Google Scholar 

  54. Dore S, Pelletier JP, DiBattista JA, Tardif G, Brazeau P, Martel-Pelletier J. Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation. Possible role of IGF-1-binding proteins. Arthritis Rheum 1994; 37: 253–63.

    CAS  Google Scholar 

  55. Jakowlew SB, Cubert J, Danielpour D, Sporn MB, Roberts AB. Differential regulation of the expression of transforming growth factor-beta mRNAs by growth factors and retinoic acid in chicken embryo chondrocytes, myocytes, and fibroblasts. J Cell Physiol 1992; 150: 377–85.

    Article  PubMed  CAS  Google Scholar 

  56. Yamaguchi Y, Mann D, Ruoslahti E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 1990; 346: 281–4.

    Article  PubMed  CAS  Google Scholar 

  57. Roughley PJ, Melching L, Recklies A. Changes in the expression of decorin and bi-glycan in human articular cartilage with age and regulation by TGF-β. Matrix Biol 1994; 14: 51–9.

    Article  PubMed  CAS  Google Scholar 

  58. Cs-Szabo G, Roughley PJ, Plaas AH, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum 1995; 38: 660–8.

    Article  PubMed  CAS  Google Scholar 

  59. Gunther M, Haubeck HD, van de Leur E, et al. TGF-β1 regulates tissue inhibitor of metalloproteinase-1 expression in differentiated human articular chondrocytes. Arthritis Rheum 1994; 37: 395–405.

    Article  PubMed  CAS  Google Scholar 

  60. Lafeber FP, van Roy HL, van der Kraan PM, Van der Berg BW, Bijlsma JW. Transforming growth factor-beta predominantly stimulates phenotypically changed chondrocytes in osteoarthritic human cartilage. J Rheumatol 1997; 24: 536–42.

    PubMed  CAS  Google Scholar 

  61. van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 1994; 71: 279–90.

    PubMed  Google Scholar 

  62. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. Tgf-beta/smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001; 153: 35–46.

    Article  PubMed  CAS  Google Scholar 

  63. Sailor LZ, Hewich RM, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long term culture. J Orthop Res 1996; 14: 937–45.

    Article  PubMed  CAS  Google Scholar 

  64. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP-2 or TGF-β1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 1998; 6: 306–17.

    Article  PubMed  Google Scholar 

  65. Luyten FP. Cartilage-derived morphogenetic proteins. Key regulators in chondrocyte differentiation? Acta Orthop Scand Suppl 1995; 266: 51–4.

    CAS  Google Scholar 

  66. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP. Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum 1998; 41: 263–73.

    Article  PubMed  CAS  Google Scholar 

  67. Matucci Cerinic M. Sensory neuropeptides and rheumatic diseases. Rheum Dis Clin North Am 1993; 19: 975–91.

    PubMed  CAS  Google Scholar 

  68. Halliday DA, McNeil JD, Scicchitano R. A metabolite of substance P, SP7-11 is involved in the pathogenesis of inflammatory joint disease. Med Hypotheses 1993; 40: 227–31.

    Article  PubMed  CAS  Google Scholar 

  69. Hill DJ, McDonald TJ. Mitogenic action of gastrin-releasing polypeptide on isolated epiphyseal growth plate chondrocytes from the ovine fetus. Endocrinology 1992; 130: 2811–9.

    Article  PubMed  CAS  Google Scholar 

  70. Villiger PM, Lotz M. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO J 1992; 11: 135–43.

    PubMed  CAS  Google Scholar 

  71. Lapadula G, Iannone F, Zuccaro C, et al. Expression of membrane-bound peptidases (CD10 and CD26) on human articular chondrocytes. Possible role of neuropeptidases in the pathogenesis of osteoarthritis. Clin Exp Rheumatol 1995; 13: 143–8.

    CAS  Google Scholar 

  72. Iannone F, Lapadula G. Neuropeptides and human osteoarthritis. J Rheumatol 1998; 25: 386–7.

    PubMed  CAS  Google Scholar 

  73. Iannone F, De Bari C, Dell’Accio F, Covelli M, Lapadula G. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 trkA) in human osteoarthritic chondrocytes. Rheumatology 2002; 41: 1413–8.

    Article  PubMed  CAS  Google Scholar 

  74. Pincelli C, Haake AR, Benassi L, et al. Autocrine nerve growth factor protects human keratinocytes from apoptosis through its high affinity receptor (TRK): a role for BCL-2. J Invest Dermatol 1997; 109: 757–64.

    Article  PubMed  CAS  Google Scholar 

  75. Pitchford S, De Moor K, Glaeser BS. Nerve growth factor stimulates rapid metabolic responses in PC12 cells. Am J Physiol 1995; 268(4 Pt 1): C936–43.

    PubMed  CAS  Google Scholar 

  76. Thorpe LW, Werrbach-Perez K, Perez-Polo JR. Effects of nerve growth factor on the expression of interleukin-2 receptors on cultured human lymphocytes. Ann NY Acad Sci 1987; 496: 310–1.

    Article  PubMed  CAS  Google Scholar 

  77. Cosgaya JM, Aranda A. Nerve growth factor regulates transforming growth factor-beta 1 gene expression by both transcriptional and posttranscriptional mechanisms in PC12 cells. J Neurochem 1995; 65: 2484–90.

    Article  PubMed  CAS  Google Scholar 

  78. Lindholm D, Hengerer B, Zafra F, Thoenen H. Transforming growth factor-beta 1 stimulates expression of nerve growth factor in the rat CNS. Neuroreport 1990; 1: 9–12.

    Article  PubMed  CAS  Google Scholar 

  79. Farnum CE, Wilsman NJ. Cellular turnover at the chondro-osseous junction of growth plate cartilage: analysis by serial sections at the light microscopical level. J Orthop Res 1989; 7: 654–66.

    Article  PubMed  CAS  Google Scholar 

  80. Aigner T, Kim HA. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002; 46: 1986–96.

    Article  PubMed  CAS  Google Scholar 

  81. Kim HA, Song YW. Apoptotic chondrocyte death in rheumatoid arthritis. Arthritis Rheum 1999; 42: 1528–37.

    Article  PubMed  CAS  Google Scholar 

  82. Hashimoto S, Setareh M, Ochs RL, Lotz M. Fas/Fas ligand expression and induction of apoptosis in chondrocytes. Arthritis Rheum 1997; 40: 1749–55.

    Article  PubMed  CAS  Google Scholar 

  83. Erlacher L, Maier R, Ullrich R, et al. Differential expression of the protooncogene bcl-2 in normal and osteoarthritic human articular cartilage. J Rheumatol 1995; 22: 926–31.

    PubMed  CAS  Google Scholar 

  84. Feng L, Balakir R, Precht P, Horton WE Jr. Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis. J Cell Biochem 1999; 74: 576–86.

    Article  PubMed  CAS  Google Scholar 

  85. Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 1998; 101: 1596–603.

    Article  PubMed  CAS  Google Scholar 

  86. Dequeker J, Mohan PS, Finkelman RD, Aerssens J, Baylink D. Generalized osteoarthritis associated with increased Insulin-like Growth Factor types I and II and Transforming Growth Factor-β in cortical bone from the iliac crest. Arthritis Rheum 1993; 12: 1702–8.

    Article  Google Scholar 

  87. Brandt KD, Braunstein EM, Visco DM, O’Connor B, Heck D, Albrecht M. Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol 1991; 18: 436–46.

    PubMed  CAS  Google Scholar 

  88. Norrdin RW, Kawcak CE, Capwell BA, McIlwraith CW. Subchondral bone failure in an equine model of overload arthrosis. Bone 1998; 22: 133–9.

    Article  PubMed  CAS  Google Scholar 

  89. Cantatore FP, Acquista CA, Corrado A, Iannone F, Lapadula G. Extracellular matrix interactions with osteoblasts in osteoarthritis. A preliminary report. J Rheumatol 2001; 28: 922–4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lapadula MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iannone, F., Lapadula, G. The pathophysiology of osteoarthritis. Aging Clin Exp Res 15, 364–372 (2003). https://doi.org/10.1007/BF03327357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327357

Keywords

Navigation