Skip to main content

Some Aspects of Microchannel Heat Transfer

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging
  • 653 Accesses

Abstract

Systems for energy conversion, heat rejection, and sensing and control often incorporate heat exchange devices. Recent developments in microfabrication and assembly methods have led to significant miniaturization of these systems. Miniaturized heat exchange devices have commonly utilized microchannel flow passages. This chapter reviews the fundamental flow and heat-transfer phenomena in microchannels, the most common numerical and experimental characterization techniques, microfabrication methods, and the application of microchannels in thermal management of high heat flux electronics. The range of channel hydraulic diameters covered in this chapter is from a few micrometers to a few millimeters where the larger diameter transport characteristics become valid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tuckerman, D.B., Pease, R.F.W.: High-performance heat sinking for VLSI. IEEE Electron. Device Lett. 2, 126–129 (1981)

    Article  Google Scholar 

  2. Wu, P., Little, W.A.: Measurement of friction factors for the flow of gases in very fine channels used for microminiature joule–Thompson refrigerators. Cryogenics. 23, 273–277 (1983)

    Article  CAS  Google Scholar 

  3. Pfahler, J., Harley, J., Bau, H.H., Zemel, J.: Gas and Liquid Flow in Small Channels. Micromechanical Sensors, Actuators and Systems. ASME, New York (1991)

    Google Scholar 

  4. Peng, X.F., Peterson, G.P., Wang, B.X.: Frictional flow characteristics of water flowing through rectangular microchannels. Exp. Heat Transf. 7, 249–264 (1994)

    Article  CAS  Google Scholar 

  5. Peng, X.F., Peterson, G.P., Wang, B.X.: Heat transfer characteristics of water flowing through rectangular microchannels. Exp. Heat Transf. 7, 265–283 (1994)

    Article  CAS  Google Scholar 

  6. Papautsky, I., Brazzle, J., Ammel, T., Frazier, A.B.: Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors Actuators. 73, 101–108 (1999)

    Article  CAS  Google Scholar 

  7. Harms, T.M., Kazmierczak, M.J., Gerner, F.M.: Developing convective heat transfer in deep rectangular microchannels. Int. J. Heat Fluid Flow. 210, 149–157 (1999)

    Article  Google Scholar 

  8. Mala, G.M., Li, D.: Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow. 20, 142–148 (1999)

    Article  CAS  Google Scholar 

  9. Mala, G.M., Li, D., Werner, C., Jacobasch, H.J., Ning, Y.B.: Flow characteristics of water through microchannels between two parallel plates with electrokinetic effects. Int. J. Heat Fluid Flow. 18, 489–496 (1997)

    Article  CAS  Google Scholar 

  10. Tso, C.P., Mahulikar, S.P.: The use of the Brinkman number for single phase forced convective heat transfer in microchannels. Int. J. Heat Mass Transf. 41, 1759–1769 (1998)

    Article  CAS  Google Scholar 

  11. Xu, B., Ooi, K.T., Wong, N.T.: Experimental investigation of flow friction for liquid flow in microchannels. Int. Commun. Heat Mass Transf. 27, 1165–1176 (2000)

    Article  Google Scholar 

  12. Qu, W., Mudawar, I.: Flow boiling heat transfer in two-phase micro-channel heat sinks –II. Annular two-phase flow model. Int. J. Heat Mass Transf. 46, 2773–2784 (2002)

    Article  CAS  Google Scholar 

  13. Liu, D., Garimella, S.V.: Investigation of liquid flow in microchannels. In: Eighth AIAA/ASME Joint Thermophysics and Heat Transfer Conference (2002)

    Google Scholar 

  14. Lee, P., Garimella, S.V.: Experimental investigation of heat transfer in microchannels. In: ASME Summer Heat Transfer Conference (2003)

    Google Scholar 

  15. Kohl, M.J., Abdel-Khalik, S.I., Jeter, S.M., Sadowski, D.L.: An experimental investigation of microchannel flow with internal pressure measurements. Int. J. Heat Mass Transf. 48, 15518–11533 (2005)

    Article  Google Scholar 

  16. Wei, X., Joshi, Y.: Experimental and numerical study of sidewall profile effects on flow and heat transfer inside microchannels. Int. J. Heat Mass Transf. 50, 4640–4651 (2007)

    Article  CAS  Google Scholar 

  17. Wei, X., Joshi, Y.: Optimization study of stacked micro-channel heat sinks for micro-electronic cooling. IEEE Trans. Compon Packag Technol. 26, 55–61 (2003)

    Article  Google Scholar 

  18. Phillips, R.J.: Micro-Channel Heat Sinks: Advances in Thermal Modeling of Electronic Components and Systems. ASME, New York (1990)

    Google Scholar 

  19. Muzychka, Y.S., Yovanovich, M.M.: Modeling friction factors in non-circular ducts for developing laminar flow. In: 2nd AIAA Theoretical Fluid Mechanics Meeting (1998)

    Google Scholar 

  20. Muzychka, Y.S., Yovanovich, M.M.: Modeling Nusselt numbers for thermally developing laminar flow in non-circular ducts. In: Seventh AIAA/ASME Joint Thermophysics and Heat Transfer Conference (1998)

    Google Scholar 

  21. Revellin, R., Thome, J.R.: A new type of diabatic flow pattern map for boiling heat transfer in microchannels. J. Micromech. Microeng. 17, 788–796 (2007)

    Article  CAS  Google Scholar 

  22. Wojtan, L., Revellin, R., Thome, J.R.: Investigation of critical heat flux in single, uniformly heated microchannels. Exp. Thermal Fluid Sci. 30, 765–774 (2007)

    Article  CAS  Google Scholar 

  23. Chen, L., Tian, Y.S., Karayiannis, T.G.: The effect of tube diameter on vertical two-phase flow regimes in small tubes. Int. J. Heat Mass Transf. 49, 4220–4230 (2006)

    Article  Google Scholar 

  24. Kew, P., Cornwall, K.: Correlations for the prediction of boiling heat transfer in small diameter channels. Appl. Therm. Eng. 17, 705–715 (1997)

    Article  CAS  Google Scholar 

  25. Kawaji, M., Chung, M.Y.. Unique characteristics of adiabatic gas–liquid flows in microchannels: diameter and shape effects on flow patterns, void fraction and pressure drop. In: First ASME International Conference on Microchannels and Minichannels (2003)

    Google Scholar 

  26. Jacobi, A., Thome, J.R.: Heat transfer model for evaporation of elongated bubble flows in microchannels. J. Heat Transf. 124, 1131–1136 (2002)

    Article  CAS  Google Scholar 

  27. Li, J., Wang, B.: Size effect on two-phase regime for condensation in micro/mini tubes. Heat Transf. Asian Res. 32, 65–71 (2003)

    Article  CAS  Google Scholar 

  28. McAdams, W.H., Woods, W.K., Heroman, L.C.: Vaporization inside horizontal tubes II-benzene-oil mixtures. Trans. ASME. 64, 193–200 (1942)

    Google Scholar 

  29. Cicchitti, A., Lombaradi, C., Silversti, M., Soldaini, G., Zavattarlli, R.: Two-phase cooling experiments – pressure drop heat transfer burnout measurements. Energia Nucleare. 7, 407–425 (1960)

    Google Scholar 

  30. Dukler, A.E., Moye, W., Cleveland, R.G.: Frictional pressure drop in two-phase flow. Part A: a comparison of existing correlations for pressure loss and holdup, and part B: an approach through similarity analysis. AICHE J. 10, 38–51 (1964)

    Article  CAS  Google Scholar 

  31. Awad, M.M., Muzychka, Y.S.: Effective property models for homogeneous two-phase flows. Exp. Thermal Fluid Sci. 33, 106–113 (2008)

    Article  CAS  Google Scholar 

  32. Agostini, B., Thome, J.R.: Comparison of an extended database of flow boiling heat transfer coefficient in multi-microchannel elements with the three-zone model. In: ECI International Conference on Heat Transfer and Fluid Flow in Microscale (2005)

    Google Scholar 

  33. Kandlikar, S.G., Balasubramanian, P.: Extending the applicability of the flow boiling correlation at low Reynolds number flows in microchannels. In: First ASME International Conference on Microchannels and Minichannels (2003)

    Google Scholar 

  34. Peters, J.V.S., Kandlikar, S.G.: Further evaluation of a flow boiling correlation for microchannels and minichannels. In: Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels (2007)

    Google Scholar 

  35. Qu, W., Mudawar, I.: Measurement and correlation of critical heat flux in two-phase microchannel heat sinks. Int. J. Heat Mass Transf. 47, 2045–2059 (2004)

    Article  CAS  Google Scholar 

  36. Pribyl, D.J., Bar-Cohen, A., Bergles, A.E.: An investigation of critical heat flux and two-phase flow regimes for upward steam and water flow. In: Proceedings of the Fifth International Conference on Boiling Heat Transfer (2003)

    Google Scholar 

  37. Taitel, T., Dukler, A.E.: A model for flow regime transition in horizontal and near horizontal gas–liquid flows. AICHE J. 19, 47–55 (1975)

    Google Scholar 

  38. Agostini, B., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., Kloter, U.: High heat flux flow boiling in silicon multi-microchannels – part II: heat transfer characteristics of refrigerant R245fa. Int. J. Heat Mass Transf. 51, 5415–5425 (2008)

    Article  CAS  Google Scholar 

  39. Revellin, R., Thome, J.R.: A theoretical model for the prediction of the critical heat flux in heated microchannels. Int. J. Heat Mass Transf. 51, 1216–1225 (2008)

    Article  CAS  Google Scholar 

  40. Revellin, R., Quiben, J.M., Bonjour, J., Thome, J.R.: Effect of local hot spots on the maximum dissipation rates during flow boiling in a microchannel. IEEE Trans. Compon. Packag. Technol. 31, 407–416 (2008)

    Article  Google Scholar 

  41. Breber, G., Palen, J.W., Taborek, J.: Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J. Heat Transf. 102, 471–476 (1980)

    Article  CAS  Google Scholar 

  42. Soliman, H.M.: Correlation of mist-to-annular transition during condensation. Can. J. Chem. Eng. 61, 178–182 (1983)

    Article  CAS  Google Scholar 

  43. Wang, H.S., Rose, J.W.: A theory of film condensation in horizontal noncircular section microchannels. J. Heat Transf. 127, 1096–1105 (2005)

    Article  CAS  Google Scholar 

  44. Coleman, J.W., Garimella, S.: Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. Int. J. Refrig. 26, 117–128 (2003)

    Article  CAS  Google Scholar 

  45. Yang, C.-Y., Shieh, C.-C.: Flow pattern of air-water and two-phase R-134a in small circular tubes. Int. J. Multiphase Flow. 27, 1163–1177 (2001)

    Article  CAS  Google Scholar 

  46. Chen, Y.P., Cheng, P.: Condensation of steam in silicon microchannels. Int. Commun. Heat Mass Transf. 32, 175–183 (2005)

    Article  CAS  Google Scholar 

  47. Bandhauer, T.M., Agarwal, A., Garimella, S.: Condensation pressure drop in circular microchannels. Heat Transf. Eng. 26, 28–35 (2005)

    Google Scholar 

  48. Nema, G.: Flow Regime Transitions during Condensation in Microchannels. The George W. Woodruff School of Mechanical Engineering. Georgia Institute of Technology, Atlanta (2008)

    Google Scholar 

  49. Wang, H.S., Rose, J.W.: Film condensation in horizontal microchannels: effect of channel shape. Int. J. Therm. Sci. 45, 1205–1212 (2006)

    Article  CAS  Google Scholar 

  50. Garimella, S., Killion, J.D., Coleman, J.W.: An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels. J. Fluids Eng. 124, 205–214 (2002)

    Article  CAS  Google Scholar 

  51. Baird, J.R., Fletcher, D.F., Haynes, B.S.: Local condensation heat transfer rates in fine passages. Int. J. Heat Mass Transf. 46, 4453–4466 (2003)

    Article  CAS  Google Scholar 

  52. Moser, K.W., Webb, R.L., Na, B.: A new equivalent Reynolds number model for condensation in smooth tubes. J. Heat Transf. 120, 410–417 (1998)

    Article  CAS  Google Scholar 

  53. Bandhauer, T.M., Agarwal, A., Garimella, S.: Measurement and modeling of condensation heat transfer coefficients in circular microchannels. J. Heat Transf. 128, 1050–1059 (2006)

    Article  CAS  Google Scholar 

  54. Garimella, S., Agarwal, A., Killion, J.D.: Condensation pressure drop in circular microchannels. Heat Transf. Eng. 26, 28–35 (2005)

    Article  CAS  Google Scholar 

  55. Agarwal, A.: Heat Transfer and Pressure Drop during Condensation of Refrigerants in Microchannels. The George W. Woodruff School of Mechanical Engineering. Georgia Institute of Technology, Atlanta (2006)

    Google Scholar 

  56. Maruyama, T., Maeuchi, T.: Centrifugal-force driven flow in cylindrical micro-channel. Chem. Eng. Sci. 63, 153–156 (2008)

    Article  CAS  Google Scholar 

  57. Ducree, J., Haeberle, S., Brenner, T., Glatzel, T., Zengerle, R.: Patterning of flow and mixing in rotating radial microchannels. Microfluid. Nanofluid. 2, 97–105 (2006)

    Article  Google Scholar 

  58. Hao, Y.L., Tao, Y.-X.: A numerical model for phase-change suspension flow in microchannels. Numer. Heat Transf. A. 46, 44–77 (2004)

    Article  CAS  Google Scholar 

  59. Xing, K.Q., Tao, Y.X., Hao, Y.L.: Performance evaluation of liquid flow with PCM particles in microchannels. J. Heat Transf. 127, 931–940 (2005)

    Article  CAS  Google Scholar 

  60. Sabbah, R., Farid, M.M., Al-Hallaj, S.: Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Appl. Therm. Eng. 29, 445–454 (2009)

    Article  CAS  Google Scholar 

  61. Kuravi, S., Kota, K., Du, J., Chow, L.: Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels. J. Heat Transf. 131, 062901, 1–10 (2009)

    Google Scholar 

  62. Qu, W., Mudawar, I.: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 45, 2549–2565 (2002)

    Article  CAS  Google Scholar 

  63. Sarangi, R.K., Bhattacharya, A., Prasher, R.S.: Numerical modeling of boiling heat transfer in microchannels. Appl. Therm. Eng. 29, 300–309 (2009)

    Article  Google Scholar 

  64. Ladd, A.J.C.: Numerical simulation of particulate suspensions via a discretized Boltzmann equation, part I. theoretical foundations. J. Fluid Mech. 271, 285–309 (1994)

    Article  CAS  Google Scholar 

  65. Ladd, A.J.C.: Numerical simulation of particulate suspensions via a discretized Boltzmann equation, part II. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    Article  CAS  Google Scholar 

  66. Chang, Q.: Lattice Boltzmann Method for Thermal Multiphase Fluid Dynamics. Mechanical and Aerospace Engineering/Case Western Reserve University, Cleveland (2005)

    Google Scholar 

  67. Judy, J., Maynes, D., Webb, B.W.: Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transf. 45, 3477–3489 (2002)

    Article  CAS  Google Scholar 

  68. Harms, T.M., Kazmierczak, M.J., Gerner, F.M.: Developing convective heat transfer in deep rectangular microchannels. Int. J. Heat Fluid Flow. 20, 149–157 (1999)

    Article  CAS  Google Scholar 

  69. Wu, H.Y., Cheng, P.: Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int. J. Heat Mass Transf. 46, 2519–2525 (2003)

    Article  CAS  Google Scholar 

  70. Adrian, R.J.: Particle imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  71. Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids. 25, 316–319 (1998)

    Article  CAS  Google Scholar 

  72. Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids. 27, 414–419 (1999)

    Article  Google Scholar 

  73. Meinhart, C.D., Wereley, S.T., Gray, M.H.B.: Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Technol. 11, 809–814 (2000)

    Article  CAS  Google Scholar 

  74. Olsen, M.G., Adrian, R.J.: Brownian motion and correlation in particle image velocimetry. Opt. Laser Technol. 32, 621–627 (2000)

    Article  CAS  Google Scholar 

  75. Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids. 29, 166–174 (2000)

    Article  Google Scholar 

  76. Olsen, M.G., Bourdon, C.J.: Out-of-plane motion effects in microscopic particle image velocimetry. J. Fluids Eng. 125, 895–901 (2003)

    Article  Google Scholar 

  77. Liu, D., Garimella, S.V., Wereley, S.V.: Infrared micro-particle image velocimetry of fluid flow in silicon-based microdevices. In: ASME Heat Transfer/Fluids Engineering Summer Conference (2004)

    Google Scholar 

  78. Park, J.S., Choi, C.K., Kihm, K.D.: Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids. 37, 105–119 (2004)

    Article  Google Scholar 

  79. Mielnik, M.M., Saetran, L.R.: Improvement of micro-PIV resolution by selective seeding. In: Proceedings of 4th International Conference on Nanochannels, Microchannels and Minichannels (2006)

    Google Scholar 

  80. Tsuei, L., Savas, O.: Treatment of interfaces in particle image velocimetry. Exp. Fluids. 29, 203–214 (2000)

    Article  Google Scholar 

  81. Meinhart, C.D., Wereley, S.T., Santiago, J.G.: A PIV algorithm for estimating time-averaged velocity fields. J. Fluids Eng. 122, 285–289 (2000)

    Article  Google Scholar 

  82. Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts. Academic Press, New York (1978)

    Google Scholar 

  83. Hohreiter, V., Wereley, S.T., Olsen, M.G., Chung, J.N.: Cross-correlation analysis for temperature measurement. Meas. Sci. Technol. 13, 1072–1078 (2003)

    Article  Google Scholar 

  84. Sakakibara, J., Hishida, K., Maeda, M.: Measurements of thermally stratified pipe flow using image processing techniques. Exp. Fluids. 16, 82–96 (1993)

    Article  Google Scholar 

  85. Kim, H.J., Kihm, K.D., Allen, J.S.: Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution. Int. J. Heat Mass Transf. 46, 3967–3974 (2003)

    Article  Google Scholar 

  86. Sakakibara, J., Adrian, R.J.: Measurement of temperature field of a Rayleigh–Benard convection using two-color laser induced fluorescence. Exp. Fluids. 37, 331–340 (2004)

    Article  CAS  Google Scholar 

  87. Guasto, J.S., Huang, P., Breuer, K.S.: Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp. Fluids. 41, 869–880 (2006)

    Article  CAS  Google Scholar 

  88. Guasto, J.S., Breuer, K.S.: Simultaneous, ensemble-average measurement of near-wall temperature and velocity in steady state micro-flows using single quantum dot tracking. Exp. Fluids. 45, 157–166 (2008)

    Article  CAS  Google Scholar 

  89. Gad-el-Hak, M.: MEMS Handbook. CRC/Taylor & Francis, Florida (2006)

    Google Scholar 

  90. de Boer, M.J., Tjerkstra, R.W., Berenschot, J.W., Jansen, H.V., Burger, G.J., Gardeniers, J.G.E., Elwenspoek, M., van den Berg, A.: Micromachining of buried micro channels in silicon. J. Microelectromech. Syst. 9, 94–103 (2000)

    Article  Google Scholar 

  91. Jayachandran, J.P., Reed, H.A., Zhen, H., Rhodes, L.F., Henderson, C.L., Allen, S.A.B., Kohl, P.A.: Air-channel fabrication for microelectromechanical systems via sacrificial photosensitive polycarbonates. J. Microelectromech. Syst. 12, 147–159 (2003)

    Article  CAS  Google Scholar 

  92. Papautsky, I., Brazzle, J., Swerdlow, H., Frazier, A.B.: A low-temperature IC-compatible process for fabricating surface-micromachined metallic microchannels. J. Microelectromech. Syst. 7, 267–273 (1998)

    Article  CAS  Google Scholar 

  93. Pijnenburg, R.H.W., Dekker, R., Nicole, C.C.S., Aubry, A., Eummelen, E.H.E.C.: Integrated micro-channel cooling in silicon. In: Proceedings of the 34th European Solid-State Device Research Conference (2004)

    Google Scholar 

  94. Oprins, H., Nicole, C.C.S., Baret, J.C., Van der Veken, G., Lasance, C., Baelmans, M.: On-chip liquid cooling with integrated pump technology. In: Proceedings of 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium (2005)

    Google Scholar 

  95. Chang, J.Y., Prasher, R.S., Chau, D., Myers, A., Dirner, J., Prstic, S., He, D.: Convective performance of package based single phase microchannel heat exchanger. In: Proceedings of ASME InterPACK (2005)

    Google Scholar 

  96. Kaltsas, G., Pagonis, D.N., Nassiopoulou, A.G.: Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology. J. Microelectromech. Syst. 12, 863–872 (2003)

    Article  CAS  Google Scholar 

  97. Dang, B., Joseph, P.J., Bakir, M.S., Spencer, T., Kohl, P., Meindl, J.: Wafer-level microfluidic cooling interconnects for GSI. In: Proceedings of IEEE International Interconnect Technology Conference (2005)

    Google Scholar 

  98. Dang, B., Bakir, M., Meindl, J.: Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink. IEEE Electron. Device Lett. 27, 117–119 (2006)

    Article  Google Scholar 

  99. Kandlikar, S.G., Upadhye, H.R.: Extending the heat flux limit with enhanced microchannels in direct single-phase cooling of computer chips. In: Proceedings of 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium (2005)

    Google Scholar 

  100. Pal, A., Joshi, Y.K., Beitelmal, M.H., Patel, C.D., Wenger, T.M.: Design and performance evaluation of a compact thermosyphon. IEEE Trans. Compon. Packag. Technol. 25, 601–607 (2002)

    Article  Google Scholar 

  101. Dang B.: Integrated Input/Output Interconnection and Packaging for GSI, Ph.D. Thesis, The School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta (2006)

    Google Scholar 

  102. Copeland, D., Behnia, M., Nakayama, W.: Manifold microchannel heat sinks: isothermal analysis. IEEE Trans. Compon. Packag. Manuf. Technol. Part A. 20, 96–102 (1997)

    Article  Google Scholar 

  103. Kim, Y., Chun, W., Kim, J., Pak, B., Baek, B.: Forced air cooling by using manifold microchannel heat sinks. J. Mech. Sci. Technol. 12, 709–718 (1998)

    Google Scholar 

  104. Xu, D., Pan, L.: Numerical study of nanofluid flow and heat transfer in microchannels. Int. J. Nanosci. 5, 747–752 (2006)

    Article  CAS  Google Scholar 

  105. Wei, X.J., Joshi, Y.K., Ligrani, P.M.: Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface. J. Electron. Packag. 129, 63–70 (2007)

    Article  CAS  Google Scholar 

  106. Silva, C., Marotta, E., Fletcher, L.: Flow structure and enhanced heat transfer in channel flow with dimpled surfaces: application to heat sinks in microelectronic cooling. J. Electron. Packag. 129, 157–166 (2007)

    Article  CAS  Google Scholar 

  107. Silva, C., Park, D., Marotta, E., Fletcher, L.: Optimization of fin performance in a laminar channel flow through dimpled surfaces. J. Heat Transf. 131, 021702 (1–9, 2009)

    Google Scholar 

  108. Sekar, D., King, C., Dang, B., Spencer, T., Thacker, H., Joseph, P., Bakir, M., Meindl, J.: A 3D-IC technology with integrated microchannel cooling. In: Proceedings of IEEE International Interconnect Technology Conference (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, Y., Wei, X., Dang, B., Kota, K. (2021). Some Aspects of Microchannel Heat Transfer. In: Wong, C.PP., Moon, Ks.(., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Cham. https://doi.org/10.1007/978-3-030-49991-4_10

Download citation

Publish with us

Policies and ethics