Skip to main content

Fungi Involved in the Biodeterioration and Bioconversion of Lignocellulose Substrates

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Basidiomycota species that cause “brown rot” or “white rot” of wood are the primary organisms involved in depolymerization of the two most abundant polymeric materials on earth: cellulose and lignin. Ascomycota species are also involved in the deconstruction of wood, and although less ubiquitous compared to the Basidiomycota decays, these Ascomycota species cause a “soft rot” decay of wood that is important in some environments. Wood decay fungi are important from the standpoint of cycling and sequestration of recalcitrant lignocellulose carbon, and from an economic standpoint, they also cause significant destruction of the built environment. This chapter will review these decay fungi but also will overview Ascomycota molds and staining (stain) fungi that live on the surface or attack parenchyma of harvested wood and that typically do not cause decay or structural deterioration of timber. Over the last 70 years, several genera and species of fungi discussed in this chapter, and the extracellular enzymes and metabolic systems from these fungi, have been examined for potential applications in industrial processing, particularly in biorefinery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Chapter One—Insights into lignin degradation and its potential industrial applications. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 82. Academic, San Diego, CA, pp 1–28. https://doi.org/10.1016/B978-0-12-407679-2.00001-6

  • Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Deterioration and protection of sustainable biomaterials, vol 1158. ACS symposium series, vol 1158. American Chemical Society, Washington, DC, pp 3–21. https://doi.org/10.1021/bk-2014-1158.ch001

  • Arantes V, Milagres AMF (2006) Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J Chem Technol Biotechnol 81(3):413–419. https://doi.org/10.1002/jctb.1417

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF, Filley T, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38(4):541–555. https://doi.org/10.1007/s10295-10010-10798-10292

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94(2):323–338. https://doi.org/10.1007/s00253-012-3954-y

    Article  CAS  PubMed  Google Scholar 

  • Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ Health Perspect 103(Suppl 5):59–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba Y, Tanabe T, Shirai N, Watanabe T, Honda Y, Watanabe T (2011) Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenergy 35:320–332. https://doi.org/10.1016/j.biombioe.2010.08.040

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32(3):501–521. https://doi.org/10.1111/j.1574-6976.2008.00106.x

    Article  CAS  PubMed  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part I. The ferrous ion reaction. Faraday Soc Trans 47:462–500

    Article  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):79A–87A

    Article  Google Scholar 

  • Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH (2018) Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol Mol Biol Rev 82(4):e00029–e00018. https://doi.org/10.1128/mmbr.00029-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette RA, Burnes TA, Leatham GF, Effland MJ (1988) Selection of white-rot fungi for biopulping. Biomass 15(2):93–101. https://doi.org/10.1016/0144-4565(88)90099-6

    Article  CAS  Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 70(3):1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddy L (2016) Chapter 9—Interactions with humans and other animals. In: The fungi, 3rd edn. Academic Press, Boston, pp 293–336. https://doi.org/10.1016/B978-0-12-382034-1.00009-8

    Chapter  Google Scholar 

  • Brenelli L, Squina FM, Felby C, Cannella D (2018) Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9. Biotechnol Biofuels 11(1):10. https://doi.org/10.1186/s13068-017-0985-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero S, Ibarra D, Martínez MJ, Martínez ÁT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71(4):1775–1784. https://doi.org/10.1128/AEM.71.4.1775-1784.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100(22):9451–9467. https://doi.org/10.1007/s00253-016-7884-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. USDA, Washington, DC

    Google Scholar 

  • Cowling EB (1964) Microorganisms and microbial enzyme systems as selective tools in wood anatomy. In: Cote Jr WA (ed) Proceedings, Upper Saranac Lake, NY, pp 341–368

    Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel G (2003) Microview of wood under degradation by bacteria and fungi. In: Wood deterioration and preservation, vol 845. ACS symposium series, vol 845. American Chemical Society, Washington, DC, pp 34–72. https://doi.org/10.1021/bk-2003-0845.ch004

  • Daniel G (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots, and bacteria. In: Nicholas Darrel D, Goodell B, Schultz Tor P (eds) Deterioration and protection of sustainable biomaterials. ACS symposium series, vol 1158. American Chemical Society, Washington, DC, pp 23–58. https://doi.org/10.1021/bk-2014-1158.ch002

  • Daniel G (2016) Chapter 8—Fungal degradation of wood cell walls: origins, functions, and applications. In: Kim YS, Funada R, Singh AP (eds) Secondary xylem biology. Academic Press, Boston, pp 131–167. https://doi.org/10.1016/B978-0-12-802185-9.00008-5

    Chapter  Google Scholar 

  • Daniel G, Nilsson T (1998) Chapter 3. Development in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman J (eds) Forest products biotechnology. Taylor and Francis, London, pp 235–250

    Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Beer Z, Seifert K, Wingfield M (2013a) The ophiostomatoid fungi: their dual position in the Sordariomycetes. The ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Ser 12:1–19

    Google Scholar 

  • De Beer ZW, Seifert K, Wingfield M (2013b) A nomenclator for ophiostomatoid genera and species in the ophiostomatales and microascales. Ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Ser 12:261–268

    Google Scholar 

  • Dill I, Kraepelin G (1986) Palo Podrido: model for extensive delignification of wood by Ganoderma applanatum. Appl Environ Microbiol 52(6):1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. https://doi.org/10.1126/science.1227491

    Article  CAS  PubMed  Google Scholar 

  • Eastwood DC (2014) Evolution of fungal wood decay. In: Deterioration and protection of sustainable biomaterials. ACS symposium series, vol 1158. American Chemical Society, Washington, DC, pp 93–112. https://doi.org/10.1021/bk-2014-1158.ch005

  • Encinas O, Daniel G (1995) Wood Cell Wall Biodegradation by the Blue Stain Fungus Botryodiplodia theobromae Pat. Material und Organismen 29(4):255–272

    Google Scholar 

  • Encinas O, Daniel G (1996) Decay capacity of different strains of the blue stain fungus Lasiodiplodia theobromae on various wood species. Material und Organismen 30(4):239–258

    Google Scholar 

  • Eriksson K-E, Kirk TK (1985) Biopulping, biobleaching and treatment of kraft bleaching effluents with white-rot fungi. In: Moo-Young M (ed) Comprehensive biotechnology, vol 4. Pergamon Press, Toronto, pp 271–294

    Google Scholar 

  • ExPASy (2018) Enzyme entry EC 1.11.1.19. Dye decolorizing peroxidase. https://enzyme.expasy.org/EC/1.11.1.19

  • Fackler K, Gradinger C, Schmutzer M, Tavzes C, Burgert I, Schwanninger M, Hinterstoisser B, Watanabe T, Messner K (2007) Biotechnological wood modification with selective white-rot fungi and its molecular mechanism. Food Technol Biotechnol 45:269–276

    CAS  Google Scholar 

  • FAO (2016) Regulation of wood packaging material in international trade. International Standard for Phytosanitation Measures. ISPM 15. Food and Agriculture Organization of the United Nations: International Plant Protection Convention, Viale delle Terme di Caracalla, 00153 Rome, Italy

    Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Duenas FJ, Miki Y, Martinez MJ, Hammel KE, Martinez AT (2012) Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 287(20):16903–16916. https://doi.org/10.1074/jbc.M112.356378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719. https://doi.org/10.1126/science.1221748

    Article  CAS  PubMed  Google Scholar 

  • Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45(5):383–388

    Article  CAS  Google Scholar 

  • Forest-Products-Laboratory (2010) Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, p 508

    Google Scholar 

  • Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken J-P, Weijers D, van Berkel WJH, Gruppen H, Kabel MA (2017) Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnol Biofuels 10:121–121. https://doi.org/10.1186/s13068-017-0810-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 376(1):171–179. https://doi.org/10.1006/abbi.1999.1691

    Article  CAS  PubMed  Google Scholar 

  • Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Deterioration and protection of sustainable biomaterials. ACS symposium series, vol 1158. American Chemical Society, Washington, DC, pp 3–21. https://doi.org/10.1021/bk-2014-1158.ch001

  • Goodell B, Jellison J (2008) Oxidation using a non-enzymatic free radical system mediated by redox cycling chelators. US Patent 7,396,974B2

    Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Goodell B, Qian Y, Jellison J, Richard M, Qi W (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. Prog Biotechnol 21:37–47. Biotechnology in the Pulp and Paper Industry. Elsevier Press

    Google Scholar 

  • Goodell B, Qian Y, Jellison J, Richard M (2004) Decolorization and degradation of dyes with mediated Fenton reaction. Water Environ Res 76(6):2703–2707

    Article  CAS  PubMed  Google Scholar 

  • Goodell B, Qian Y, Jellison J (2008) Fungal decay of wood: soft rot—brown rot—white rot. In: Development of commercial wood preservatives. ACS symposium series, vol 982. American Chemical Society, Washington, DC, pp 9–31. https://doi.org/10.1021/bk-2008-0982.ch002

  • Goodell B, Zhu Y, Kim S, Kafle K, Eastwood D, Daniel G, Jellison J, Yoshida M, Groom L, Pingali SV, O’Neill H (2017) Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179. https://doi.org/10.1186/s13068-017-0865-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves H (1977) An illustrated comment on the soft rot problem in Australia and Papua New Guinea. Holzforschung 31(3):71–79. https://doi.org/10.1515/hfsg.1977.31.3.71

    Article  Google Scholar 

  • Hale MD, Eaton RA (1985) The ultrastructure of soft rot fungi. I. Fine hyphae in wood cell walls. Mycologia 77(3):447–463. https://doi.org/10.2307/3793202

    Article  Google Scholar 

  • Hatakka A, Hammel KE (2011) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Industrial applications. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol 10. Springer, Berlin, pp 319–340. https://doi.org/10.1007/978-3-642-11458-8_15

  • Highley TL (1988) Cellulolytic activity of brown-rot and white-rot fungi on solid media. Holzforschung 42(4):211–216

    Article  CAS  Google Scholar 

  • Highley TL, Illman BL (1991) Progress in understanding how brown-rot fungi degrade cellulose. Biodeterior Abstr 5(3):231–244

    Google Scholar 

  • Highley T, Bar-Lev S, Kirk T, Larsen M (1983) Influence of O2 and CO2 on wood decay by heartrot and saprot fungi. Phytopathology 73:630–633

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30(4):454–466. https://doi.org/10.1016/S0141-0229(01)00528-2

    Article  CAS  Google Scholar 

  • Jellison J, Chandhoke V, Goodell B, Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl Microbiol Biotechnol 35:805–809

    Article  CAS  Google Scholar 

  • Jin L, Schultz TP, Nicholas DD (1990a) Structural characterization of brown-rotted lignin. Holzforschung 44(2):133–138

    Article  Google Scholar 

  • Jin L, Sellers T, Schultz TP, Nicholas DD (1990b) Utilization of lignin modified by brown-rot fungi. I. Properties of flakeboard produced with a brown-rotted lignin modified phenolic adhesive. Holzforschung Int J Biol Chem Phys Technol Wood 44. https://doi.org/10.1515/hfsg.1990.44.3.207

  • Jin L, Nicholas DD, Schultz TP (1991) Wood laminates glued by enzymatic oxidation of brown-rotted lignin. Holzforschung 45(6):467–468

    Article  CAS  Google Scholar 

  • Kartal SN, Terzi E, Yılmaz H, Goodell B (2015) Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int Biodeterior Biodegrad 99:95–101. https://doi.org/10.1016/j.ibiod.2015.01.004

    Article  CAS  Google Scholar 

  • Kazemi SM, Dickinson DJ, Murphy RJ (2001) Effects of initial moisture content on wood decay at different levels of gaseous oxygen concentrations. J Agric Sci Technol 3:293–304

    Google Scholar 

  • Kent MS, Zeng J, Rader N, Avina IC, Simoes CT, Brenden CK, Busse ML, Watt J, Giron NH, Alam TM, Allendorf MD, Simmons BA, Bell NS, Sale KL (2018) Efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction: optimization of H2O2 use and performance as a dispersant. Green Chem 20(13):3024–3037. https://doi.org/10.1039/C7GC03459H

    Article  CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Kido R, Takeeda M, Manabe M, Miyagawa Y, Itakura S, Tanaka H (2015) Presence of extracellular NAD+ and NADH in cultures of wood-degrading fungi. Biocontrol Sci 20. https://doi.org/10.4265/bio.20.105

  • Kim JS, Gao J, Daniel G (2015) Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus I. preferential lignin degradation prior to hemicelluloses in Norway spruce wood. Int Biodeterior Biodegrad 105:30–40. https://doi.org/10.1016/j.ibiod.2015.08.008

    Article  CAS  Google Scholar 

  • Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop D, Levinson D, Makovitzki A, Agami A, Lerer E, Mimran A, Yarden O, Hadar Y (2016) Limits of versatility of versatile peroxidase. Appl Environ Microbiol 82(14):4070–4080. https://doi.org/10.1128/AEM.00743-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Varnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, Goodell B, Alfredsen G, Westereng B, Eijsink VG, Yoshida M (2016) A lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol 82(22):6557–6572. https://doi.org/10.1128/aem.01768-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krah F-S, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS (2018) Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol Biol 18(1):119. https://doi.org/10.1186/s12862-018-1229-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber C, Schwarz T, Nguyen QK, Lorenz P, Lochnit G, Zorn H (2017) Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus. AMB Express 7:164. https://doi.org/10.1186/s13568-017-0463-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Walker KL, Han HS, Kang J, Prinz FB, Waymouth RM, Nam HG, Zare RN (2019) Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1911883116

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185. https://doi.org/10.1006/fgbi.1999.1150

  • Li K, Geng X (2005) Formaldehyde-free wood adhesives from decayed wood. Macromol Rapid Commun 26(7):529–532. https://doi.org/10.1002/marc.200400594

    Article  CAS  Google Scholar 

  • Li F, Ma F, Zhao H, Zhang S, Wang L, Zhang X, Yu H (2019) A lytic polysaccharide monooxygenase from a white-rot fungus drives the degradation of lignin by a versatile peroxidase. Appl Environ Microbiol 85(9):e02803–e02818. https://doi.org/10.1128/aem.02803-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78(1):91–102. https://doi.org/10.1111/j.1574-6941.2011.01144.x

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248. https://doi.org/10.4489/MYCO.2010.38.4.238

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS (2015) Chapter Two—Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 91. Academic Press, New York, pp 63–137. https://doi.org/10.1016/bs.aambs.2014.12.001

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Wymelenberg AV, Gaskell J, Lindquist E, Sabat G, BonDurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0809575106

  • Mate Diana M, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10(6):1457–1467. https://doi.org/10.1111/1751-7915.12422

    Article  CAS  PubMed  Google Scholar 

  • Messner K, Fackler K, Lamaipis P, Gindl W, Srebotnik E, Watanabe T (2003) Overview of white-rot research: where we are today. ACS Symp Ser 845:73–96. https://doi.org/10.1021/bk-2003-0845.ch005

    Article  CAS  Google Scholar 

  • Miller DJ, Goodell B (1981) Blue staining in ponderosa pine sapwood at moderate and low temperatures. Forest Prod J 31(2):54–55

    Google Scholar 

  • Morrell J, Zabel RA (1985) Wood strength and weight losses caused by soft rot fungi isolated from treated southern pine utility poles. Wood Fiber Sci 17(1):132–143

    Google Scholar 

  • Mycologix LTD (2013) CompaniesHouse.Gov.UK. Accessed 13 Sept 2019

    Google Scholar 

  • NeLMA (2016) Beware of using blue-stained wood in wood packaging materials. http://www.nelma.org/beware-of-using-blue-stained-wood-in-wood-packaging-materials/

  • Niku-Paavola ML, Anke H, Poppius-Levlin K, Viikari L (2003) Siderophores as natural mediators in laccase-aided degradation of lignin. In: Applications of enzymes to lignocellulosics. ACS Symposium Series, vol 855. American Chemical Society, Washington, DC, pp 176–190. https://doi.org/10.1021/bk-2003-0855.ch011

  • Nurika I, Eastwood D, Bugg T, Barker G (2019) Biochemical characterization of Serpula lacrymans iron-reductase enzymes in lignocellulose breakdown. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-019-02238-7

  • Otjen L, Blanchette RA (1986) A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes. Can J Bot 64:905–911

    Article  Google Scholar 

  • Otjen L, Blanchette R, Effland M, Leatham G (1987) Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung Int J Biol Chem Phys Technol Wood 41(6):343. https://doi.org/10.1515/hfsg.1987.41.6.343

    Article  CAS  Google Scholar 

  • Parra C, Rodriguez J, Baeza J, Freer J, Duran N (1998) Iron-binding catechols oxidating lignin and chlorolignin. Biochem Biophys Res Commun 251(2):399–402

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the Brown Rot Fungus Gloeophyllum trabeum. Appl Environ Microbiol 65(2):674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds. Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:402. https://doi.org/10.1016/j.jmb.2005.09.047

    Article  CAS  Google Scholar 

  • Pettersson G, Cowling EB, Porath J (1963) Studies on cellulolytic enzymes. Biochim Biophys Acta 67:1–8

    Article  CAS  PubMed  Google Scholar 

  • Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105(6):614–621. https://doi.org/10.1263/jbb.105.614

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Goodell B, Genco JM (2002) The effect of a chelator mediated fenton system on the fiber and paper properties of hardwood kraft pulp. J Wood Chem Technol 22(4):267–284. https://doi.org/10.1081/WCT-120016262

    Article  CAS  Google Scholar 

  • Qian Y, Goodell B, Jellison J, Felix CC (2004) The effect of hydroxyl radical generation on free-radical activation of TMP fibers. J Polym Environ 12(3):147–155. https://doi.org/10.1023/b:jooe.0000038546.65047.35

    Article  CAS  Google Scholar 

  • Qin X, Sun X, Huang H, Bai Y, Wang Y, Luo H, Yao B, Zhang X, Su X (2017) Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. Biotechnol Biofuels 10(1):103. https://doi.org/10.1186/s13068-017-0787-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34(8):1257–1262. https://doi.org/10.1016/j.biombioe.2010.03.015

  • Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111(27):9923–9928. https://doi.org/10.1073/pnas.1400592111

    Article  CAS  PubMed  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev MMBR 78(4):614–649. https://doi.org/10.1128/MMBR.00035-14

    Article  PubMed  Google Scholar 

  • Schmidt I (2006) Wood and tree fungi: biology, damage, protection, and use. Springer, Berlin, p 346. ISBN-13: 978-3642068751

    Google Scholar 

  • Schmidt CJ, Whitten BK, Nicholas DD (1981) A proposed role for oxalic acid in nonenzymatic wood decay by brown-rot fungi. Proc Am Wood Preserv Assoc 77:157–164

    Google Scholar 

  • Simonis JL, Raja HA, Shearer CA (2008) Extracellular enzymes and soft rot decay: are ascomycetes important degraders in fresh water? Fungal Divers 31:135–146

    Google Scholar 

  • Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi 50(10):496–501

    CAS  Google Scholar 

  • Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8(12):2214–2223. https://doi.org/10.1111/j.1462-2920.2006.01160.x

    Article  CAS  PubMed  Google Scholar 

  • Tamaru Y, Yoshida M, Eltis LD, Goodell B (2019) Multiple iron reduction by methoxylated phenolic lignin structures and the generation of reactive oxygen species by lignocellulose surfaces. Int J Biol Macromol 128:340–346. https://doi.org/10.1016/j.ijbiomac.2019.01.149

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Fuse G, Enoki A (1992) Soft rot of wood caused by three microfungi grown on four media. Material und Organismen 27(3):157–170

    Google Scholar 

  • Tanaka H, Itakura S, Enoki A (2000) Phenol oxidase activity and one-electron oxidation activity in wood degradation by soft-rot deuteromycetes. Holzforschung 54(5):463–468. https://doi.org/10.1515/HF.2000.078

    Article  CAS  Google Scholar 

  • Tanaka H, Yoshida G, Baba Y, Matsumura K, Wasada H, Murata J, Agawa M, Itakura S, Enoki A (2007) Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. J Biotechnol 128(3):500–511. https://doi.org/10.1016/j.jbiotec.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  • Tepfer M, Taylor IEP (1981) The permeability of plant cell walls as measured by gel filtration chromatography. Science 213(August 14):761–763

    Article  CAS  PubMed  Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41(1):1–17. https://doi.org/10.1016/0168-1656(95)00042-O

    Article  CAS  Google Scholar 

  • Unligil HH, Chafe SC (1974) Perforation hyphae of soft rot fungi in the wood of white spruce [Picea glauca (Moench.) Voss.]. Wood Sci Technol 8:27–32

    Google Scholar 

  • Uzunovic A, Byrne T, Gignac M, Yang D-Q (2008) Wood discolourations & their prevention: with an emphasis on bluestain. Special publication SP-50. FPInnovations, Canada

    Google Scholar 

  • Varela E, Tien M (2003) Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl Environ Microbiol 69(10):6025–6031. https://doi.org/10.1128/AEM.69.10.6025-6031.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV (2017) Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 12(3):e0173813. https://doi.org/10.1371/journal.pone.0173813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Cannella D, Wittrup Agger J, Jørgensen H, Larsen Andersen M, Eijsink VGH, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561. https://doi.org/10.1038/srep18561. https://www.nature.com/articles/srep18561#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26(4):379–386. https://doi.org/10.1016/j.biotechadv.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  • Wilcox WW (1978) Review of literature on the effects of early stages of decay on wood strength. Wood Fiber 9(4):252–257

    Google Scholar 

  • Williams S (2017) CAZypedia carbohydrate-active enzymes. https://www.cazypedia.org/index.php/Glycoside_Hydrolase_Families. Accessed 30 Dec 2017

  • Wolfaardt F, Taljaard JL, Jacobs A, Male JR, Rabie CJ (2004) Assessment of wood-inhabiting Basidiomycetes for biokraft pulping of softwood chips. Bioresour Technol 95(1):25–30. https://doi.org/10.1016/j.biortech.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  • World-Health-Organization (2009) Dampness and mould: WHO guidelines for indoor air quality. http://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf

  • Worrall JJ, Anagnost SE, Wang CJK (1991) Conditions for soft rot of wood. Can J Microbiol 37:869–874

    Article  Google Scholar 

  • Yelle D, Goodell B, Gardner D, Amirbahman A, Winistofer P, Shaler S (2004) Bonding of wood fiber composites using a synthetic chelator-lignin activation system. Forest Prod J 54(4):73–78

    CAS  Google Scholar 

  • Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13(4):1091–1100. https://doi.org/10.1111/j.1462-2920.2010.02417.x

    Article  CAS  PubMed  Google Scholar 

  • Zabel RA, Morrell JJ (2020) Wood microbiology: decay and its prevention, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Zabel RA, Lombard FF, Wang CJK, Terracina F (1985) Fungi associated with decay in treated southern pine in the eastern United States. Wood Fiber Sci 17:75–91

    CAS  Google Scholar 

  • Zhang J, Presley GN, Hammel KE, Ryu J-S, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS (2016) Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci USA 113(39):10968–10973. https://doi.org/10.1073/pnas.1608454113

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Mahaney J, Jellison J, Cao J, Gressler J, Hoffmeister D, Goodell B (2016) Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species. J Ind Microbiol Biotechnol:1–10. https://doi.org/10.1007/s10295-016-1889-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Goodell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goodell, B. (2020). Fungi Involved in the Biodeterioration and Bioconversion of Lignocellulose Substrates. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_15

Download citation

Publish with us

Policies and ethics