Skip to main content

Interactive AR Models in Participation Processes

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality. Design and Interaction (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12190))

Included in the following conference series:

Abstract

It is getting more and more important to enable stakeholders from different backgrounds to collaborate efficiently on joint projects. Physical models provide a better understanding of spatial relationships while using video mapping of suitable visualizations enables a meaningful enrichment of information. We therefore developed a demonstrator using a physical architectural model as base and projected additional data via video mapping onto it. In this paper, we describe the initial situation and the requirements for the development of our demonstrator, its construction, the software developed for this purpose, including the calibration process as well as the implementation of tangible interaction as a means to control data and visualizations. In addition, we describe the whole user interface and lessons learned. Ultimately, we present a platform that encourages discussions and can enrich participation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, A.: Architectural Model as Machine – A New View of Models From Antiquity to the Present Day. Elsevier, Oxford (2004)

    Google Scholar 

  2. Hohauser, S.: Architectural and Interior Models, p. 6. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  3. Piper, B.; Ratti, C., Ishii, H.: Illuminating clay: a 3-D tangible interface for landscape analysis. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2002)

    Google Scholar 

  4. Schubert, G.: Interaktionsformen für das digitale Entwerfen: Konzeption und Umsetzung einer rechnergestützten Entwurfsplattform für die städtebaulichen Phasen in der Architektur. Dissertation. Technical University of Munich (2014)

    Google Scholar 

  5. Catanese, R.: 3D architectural videomapping. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-5/W2 (2013)

    Google Scholar 

  6. Alonso, L., et al.: CityScope: a data-driven interactive simulation tool for urban design. use case volpe. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 253–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96661-8_27

    Chapter  Google Scholar 

  7. Grignard, A., et al.: Simulate the impact of the new mobility modes in a city using ABM. In: ICCS 2018 (2018)

    Google Scholar 

  8. Ishii, H., et al.: Augmented urban planning workbench: overlaying drawings, physical models and digital simulation. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality, p. 203. IEEE Computer Society (2002)

    Google Scholar 

  9. Korn, O., Schmidt, A., Hörz, T.: The potentials of in-situ-projection for augmented workplaces in production: a study with impaired persons. In CHI 2013 Extended Abstracts on Human Factors in Computing Systems (CHI EA 2013), pp. 979–984. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2468356.2468531

  10. Huber, J., Steimle, J., Liao, C., Liu, Q., Mühlhäuser, M.: LightBeam: interacting with augmented real-world objects in pico projections. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, MUM 2012, pp. 16:1–16:10 (2012). https://doi.org/10.1145/2406367.2406388

  11. Narazani, M., Eghtebas, C., Jenney, S.L., Mühlhaus, M.: Tangible urban models: two-way interaction through 3D printed conductive tangibles and AR for urban planning. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2019 Adjunct), pp. 320–323. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3341162.3343810

  12. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

Download references

Acknowledgements

This work was conducted within the scope of two research projects. The first is “KATZE” as part of the idea competition “Mobility concepts for the emission-free campus” and was funded by the German Federal Ministry of Education and Research. The second is “View-BW – Visualization of the energy transformation Baden-Württemberg” that was funded by the German Federal Ministry of Environment (Funding ID: BWED19004). We like to thank Prof. Robert Pawlowski, Prof. Jan Riel, Prof. Jochen Eckart, Prof. Susanne Dürr, Jonas Fehrenbach, Isabelle Ginter and Lena Christ for their contribution to this work. We would also like to thank our stakeholders, the students and all other participants for their good cooperation over the course of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Trefzger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansert, J., Trefzger, M., Schlegel, T. (2020). Interactive AR Models in Participation Processes. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics