Skip to main content

Biological Driven Phase Transitions in Fully or Partly Saturated Porous Media: A Multi-Component FEM Simulation Based on the Theory of Porous Media

  • Chapter
  • First Online:
Views on Microstructures in Granular Materials

Abstract

Bacterial methane oxidation in landfill cover soils, which turns the emitting methane caused by waste degradation into carbon dioxide, reduces the climate impact of landfill gas emissions significantly, since methane is estimated to have a global warming potential (GWP) of 25 over 100 years (GWP of CO2 = 1). To understand and forecast the biological processes, a Finite-Element Model (FEM) is developed to simulate the behavior of methanotrophic layers. A multiphasic continuum mechanical approach based on the extended Theory of Porous Media (eTPM) is chosen, providing a macroscopic, multi-component view on the bacterial progress including the relevant gas transport processes of diffusion and advection in porous media as well as bacterial driven conversion processes. The presented thermodynamically consistent model also considers energy production within the gas phase resulting from exothermic reactions. An experimental setup was developed to validate the model also in terms of temperature development via the thermal imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, 2013.

    Google Scholar 

  2. J. Bluhm. Modelling of saturated thermo-elastic porous solids with different phase temperatures. In W. Ehlers and J. Bluhm, editors, Porous media: Theory, Experiments and Numerical Applications, pages 87–118. Springer-Verlag, Berlin - Heidelberg - New York, 2002.

    Google Scholar 

  3. R. M. Bowen. Toward a thermodynamics and mechanics of mixtures. Archives for Rational Mechanics and Analysis, 24:370–403, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. M. Bowen. Theory of mixtures. In A. C. Eringen, editor, Continuum Physics, volume III, pages 1–127. Academic Press, New York, 1976.

    Google Scholar 

  5. B. D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Archives for Rational Mechanics and Analysis, 13:167–178, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. de Boer. Theory of Porous Media – highlights in the historical development and current state. Springer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  7. A. Ebigbo, R. Helmig, A. B. Cunningham, H. Class, and R. Gerlach. Modelling biofilm growth in the presence of carbon dioxide and water flow in the subsurface. Advances in Water resources, 33:762–781, 2010.

    Article  Google Scholar 

  8. W. Ehlers. Poröse Medien – ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Technical Report 47, Universität-GH Essen, 1989.

    Google Scholar 

  9. W. Ehlers. Foundations of multiphasic and porous materials. In W. Ehlers and J. Bluhm, editors, Porous Media: Theory, Experiments and Numerical Applications, pages 3–86. Springer-Verlag, Berlin, 2002.

    Chapter  MATH  Google Scholar 

  10. S. Feng, C. W. W. Ng, A. K. Leung, and H. W. Liu. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover. Waste Management, 68:355–368, 2017.

    Article  Google Scholar 

  11. F. Golfier, B. D. Wood, L. Orgogozo, and M. Bus. Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Advances in Water Resources, 32:463–485, 2009.

    Article  Google Scholar 

  12. C. V. Hettiarachchi, P. J. Hettiaratchi, A. K. Mehrotra, and S. Kumar. Field-scale operation of methane bio filtration systems to mitigate point source methane emissions. Environmental Pollution, 159 (6):1715–1720, 2011.

    Article  Google Scholar 

  13. H. A. Hilger, D. F. Cranford, and M. Barlaz. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology & Biochemistry, 23:457–467, 2000.

    Article  Google Scholar 

  14. H. A. Hilger, S. K. Liehr, and M. Barlaz. Exopolysaccharide control of methane oxidation in landfill cover soil. Journal of Environmental Engineering, 23:457–467, 1999.

    Google Scholar 

  15. M. Humer and P. Lechner. Deponiegasentsorgung von Altlasten mit Hilfe von Mikroorganismen. In sterreichische Wasser- und Abfallwirtschaft, number Heft 7/8 in 49. Jahrgang, pages 164–171. Springer-Verlag KG, Wien, 1997.

    Google Scholar 

  16. S. Molins and K. U. Mayer. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study. Water Resources Research, 43(W05435), 2007.

    Google Scholar 

  17. S. Molins, K. U. Mayer, C. Scheutz, and P. Kjeldsen. Transport and reaction processes affecting the attenuation of landfill gas in cover soils. Journal of Environmental Quality, 37:459–468, 2008.

    Article  Google Scholar 

  18. C. W. W. Ng, S. Feng, and H. W. Liu. A fully coupled model for water-gas-heat-reactive transport with methane oxidation in landfill covers. Science of the Total Environment, 508:307–319, 2015.

    Article  Google Scholar 

  19. T. Ricken and J. Bluhm. Modeling of liquid and gas saturated porous solids under freezing and thawing cycles. In T. Schanz and A. Hettler, editors, Aktuelle Forschung in der Bodenmechanik 2013, chapter 2, pages 23–42. Springer-Verlag Berlin Heidelberg, 2014.

    Chapter  Google Scholar 

  20. T. Ricken and R. de Boer. Multiphase flow in a capillary porous medium. Computational Materials Science, 28:704–713, 2003.

    Article  Google Scholar 

  21. T. Ricken, A. Sindern, J. Bluhm, M. Denecke, T. Gehrke, and T. C. Schmidt. Concentration driven phase transitions in multiphase porous media with application to methane oxidation in landfill cover layers. Journal of Applied Mathematics and Mechanics, 94(7–8):609–622, 2014.

    MathSciNet  MATH  Google Scholar 

  22. T. Ricken and V. Ustohalova. Modeling of thermal mass transfer in porous media with applications to the organic phase transition in landfills. Computational Materials Science, 32:498–508, 2005.

    Article  Google Scholar 

  23. T. Ricken, N. Waschinsky, and D. Werner. Simulation of steatosis zonation in liver lobule - a continuummechanical bi-scale, tri-phasic, multicomponent approach. In Biomedical Technology, pages 15–33. Springer, 2018.

    Google Scholar 

  24. T. Ricken, D. Werner, H. Holzhütter, M. König, and U. D. und O. Dirsch. Modeling function–perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE–ODE approach. Biomechanics and Modeling in Mechanobiology, 14(3):515–536, 2015.

    Google Scholar 

  25. M. Robeck, T. Ricken, and R. Widmann. A finite element simulation of biological conversion processes in landfills. Waste Management, 31:663–669, 2011.

    Article  Google Scholar 

  26. M. Schulte, M. A. Jochmann, T. Gehrke, A. Thom, T. Ricken, M. Denecke, and T. C. Schmidt. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. International Journal of Environment and Waste Management, 69:281–288, 2017.

    Google Scholar 

  27. J. C. Simo and K. S. Pister. Remarks on rate constitutive equations for finite deformation problems: Computational implications. Computer Methods in Applied Mechanics and Engineering, 46 (2):201–215, 1984.

    Article  MATH  Google Scholar 

  28. A. Sindern, T. Ricken, J. Bluhm, M. Denecke, and T. C. Schmidt. Phase transition in methane oxidation layers - a coupled FE multiphase description. Proceedings of Applied Mathematics and Mechanics, 12:371–372, 2012.

    Article  Google Scholar 

  29. A. Sindern, T. Ricken, J. Bluhm, R. Widmann, and M. Denecke. Bacterial methane oxidation in landfill cover layers - a coupled FE multiphase description. Proceedings of Applied Mathematics and Mechanics, 13:193–194, 2013.

    Article  MATH  Google Scholar 

  30. A. Sindern, T. Ricken, J. Bluhm, R. Widmann, M. Denecke, and T. Gehrke. A coupled multi-component approach for bacterial methane oxidation in landfill cover layers. Proceedings of Applied Mathematics and Mechanics, 14:469–470, 2014.

    Article  MATH  Google Scholar 

  31. V. B. Stein, J. P. A. Hettiratchi, and G. Achari. Numerical model for biological oxidation and migration of methane in soils. Practice Periodical ofHazardous, Toxic, and Radioactive Waste Management, 5 (4):225–234, 2001.

    Article  Google Scholar 

  32. R. L. Taylor. FEAP - A Finite Element Analysis Program, 2012.

    Google Scholar 

  33. K. Terzaghi. Theoretical Soil Mechanics. J. Wiley and Sons, inc., 1943.

    Book  Google Scholar 

  34. A. Thom, T. Ricken, J. Bluhm, R. Widmann, M. Denecke, and T. Gehrke. Validation of a coupled FE-model for the simulation of methane oxidation via thermal imaging. Proceedings of Applied Mathematics and Mechanics, 15:433–434, 2015.

    Article  Google Scholar 

  35. C. Truesdell. Rational Thermodynamics. Springer-Verlag, Berlin - Heidelberg - New York, 2 edition, 1984.

    Google Scholar 

  36. V. Ustohalova, T. Ricken, and R. Widmann. Estimation of landfill emission lifespan using process oriented modeling - decompositions and transport processes. Waste Management, 26 (4):442–450, 2006.

    Article  Google Scholar 

  37. A. D. Visscher and O. V. Cleemput. Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Management, 23:581–591, 2003.

    Article  Google Scholar 

  38. Q. Xue, Y. Zhao, Z. Li, and L. Liu. Numerical simulation on the cracking and failure law of compacted clay lining in landfill closure cover system. International Journal for Numerical and Analytical Methods in Geomechanics, 38:1556–1584, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ricken .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Kinematics of Porous Media

The homogenized phases φ α are composed of particles Xα. At any time t each spatial point of the current placement is simultaneously occupied by every particle XS, XL, XG of the solid, liquid, and gas phase, whereby each particle proceeds from a different reference position X α at the time t = t0. Thus, each constituent is assigned to its own independent motion function χ α with

(68)

Equation (68)1 is called the Lagrange description of motion, Eq. (68)2 is the inverse map of the motion for a fixed time t, which represents the Euler description. The Euler description develops from the postulation that χ α is unique and uniquely invertible at any given time t. A mathematically necessary and sufficient condition for the existence of Eq. (68)2 is given, if the Jacobian Jα = detF α differs from zero with F α = Gradαχ α and its inverse \(\mathbf F_{\pmb {\alpha }}^{\mathrm {-1}}=\mathrm {grad}\,{\mathbf {x}}_{{\pmb {\alpha }}}\) as the deformation gradient. “Gradα” denotes the differential operator referring to the reference position X α of the constituent φ α, while “grad” refers to the actual position x. During the deformation process, F α is restricted to .

The velocity and acceleration vector, cf. (68)3−4, are defined with the material time derivatives of the Lagrange description. The material time derivative for scalar fields depending on x and t with respect to the trajectory of φ α is given with \((\ldots )^{\prime }_{{\pmb {\alpha }}}=\partial (\ldots )\,/\,\partial \mathrm {t}+[\mathrm{grad}(\ldots )]\cdot {\mathbf {x}}^{\prime }_{\pmb {\alpha }}\).

With (68)3 the material and spatial velocity gradient are defined with

$$\displaystyle \begin{aligned} ({\mathbf{F}}_{{\pmb{\alpha}}})^{\prime}_{{\pmb{\alpha}}} = \mathrm{Grad}_{{\pmb{\alpha}}}{\mathbf{x}}^{\prime}_{\pmb{\alpha}}, \quad {\mathbf{L}}_{{\pmb{\alpha}}} = (\mathrm{Grad}_{{\pmb{\alpha}}}{\mathbf{x}}^{\prime}_{\pmb{\alpha}})\,\mathbf F_{\pmb{\alpha}}^{\mathrm{-1}} = \mathrm{grad}\,{\mathbf{x}}^{\prime}_{\pmb{\alpha}} \end{aligned} $$
(69)

The tensor \({\mathbf {D}}_{{\pmb {\alpha }}}=\text{1/2}\,({\mathbf {L}}_{{\pmb {\alpha }}}+{\mathbf {L}}_{{\pmb {\alpha }}}^{\mathrm {T}})\) is defined as the symmetric part of the spatial velocity gradient. An extended explanation of the kinematics of porous media is given in [6] and [9].

Appendix 2: Evaluation of Entropy Inequality

The resultant system of field equations is set up by 29 equations, namely Eqs. (22), (24), (25), (27), (28), (29), (30), as well as the physical constraint \(\hat {\mathbf {p}}^{\mathbf S} + \textstyle \sum _{\upgamma }\,\hat {\mathbf {p}}^{\mathrm {G}\upgamma } = \mathbf {o}\), the partial densities ρ S = nSρ SR and ρ G = nGρ GR, respectively. The field equations contain overall 91 scalar field quantities, namely

$$\displaystyle \begin{aligned} \mathcal{F}=\{&\rho^{\mathbf{S}},\rho^{\mathbf{G}},\rho^{\mathbf{S}\mathrm{R}},\rho^{\mathbf{G}\mathrm{R}},\mathrm{n}^{\mathbf{S}},\mathrm{n}^{\mathbf{G}},\mathrm{c}^{\mathbf{G}},{\mathbf{x}}^{\prime}_{\mathbf{S}},{\mathbf{x}}^{\prime}_{\mathrm{G}\upgamma},\\ &{\mathbf{T}}^{\mathbf{S}},{\mathbf{T}}^{\mathbf{G}\upgamma},\mathbf{b},\hat{\mathbf{p}}^{\mathbf S},\hat{\mathbf{p}}^{\mathrm{G}\upgamma},\hat{\rho}^{\mathrm G\upgamma},\psi^{\mathbf{S}},\psi^{\mathrm G\upgamma},\eta^{\mathbf{S}},\eta^{\mathrm{G}\upgamma},\mathbf{q},\,\theta\}\,, \end{aligned} $$
(70)

where the Cauchy stresses T S and T are symmetric. Since the solid phase is assumed to be incompressible and not involved into mass transfer, the real density of the solid is known and stays constant. The gravitational acceleration b is known as well and nitrogen is not involved into gas exchange, which leads to five known field quantities

$$\displaystyle \begin{aligned} \mathcal{K}=\{\rho^{\mathbf{S}\mathrm{R}}\,,\mathbf{b}\,,\hat{\rho}^{\mathrm{GN}}\}. \end{aligned} $$
(71)

In consequence, 57 field quantities remain for which constitutive relations have to be found. The constitutive quantities are chosen with

$$\displaystyle \begin{aligned} \mathcal{C}=\{{\mathbf{T}}^{\mathbf{S}},{\mathbf{T}}^{\mathrm{G}\upgamma},\hat{\mathbf{p}}^{\mathrm{G}\upgamma},\hat{\rho}^{\mathrm{GO}},\hat{\rho}^{\mathrm{GC}}, \psi^{\mathbf{S}},\psi^{\mathrm G\upgamma},\eta^{\mathbf{S}},\eta^{\mathrm{G}\upgamma},\mathbf{q}\}. {} \end{aligned} $$
(72)

In order to provide a thermodynamic consistent description of the material behavior, the entropy inequality for the mixture is evaluated in accordance to [5], which yields restrictions for the constitutive relations. Following the principle of equipresence postulated by [35], the set of constitutive variables (72) can depend on the following process variables

$$\displaystyle \begin{aligned} \mathcal{P}=\{{\mathbf{C}}_{\mathbf{S}},\mathrm{c}^{\mathrm{G}\upgamma}_{\mathrm{mol}},\hat{\rho}^{\mathrm G\upgamma},\theta,\mathrm{grad}\>\theta,{\mathbf{w}}_{\mathrm{G}\upgamma\mathbf{S}}\}. {} \end{aligned} $$
(73)

Here, \({\mathbf {C}}_{\mathbf {S}} = {\mathbf {F}}_{\mathbf {S}}^{\mathrm {T}}{\mathbf {F}}_{\mathbf {S}}\) denotes the right Cauchy–Green deformation tensor. The entropy inequality for the binary model (solid and gas mixture) reads

$$\displaystyle \begin{aligned} &{\mathbf{T}}^{\mathbf{S}}\cdot{\mathbf{D}}_{\mathbf{S}} - \rho^{\mathbf{S}}(\psi^{\mathbf{S}})^{\prime}_{\mathbf{S}} - \rho^{\mathbf{S}}(\theta)^{\prime}_{\mathbf S}\,\eta^{\mathbf{S}} - \hat{\mathbf{p}}^{\mathbf S}\cdot{\mathbf{x}}^{\prime}_{\mathbf{S}}\\ {} -&\textstyle\sum_\upgamma[{\mathbf{T}}^{\mathrm{G}\upgamma}\cdot{\mathbf{D}}_{\mathrm{G}\upgamma} - \rho^{\mathrm{G}\upgamma}(\psi^{\mathrm{G}\upgamma})^{\prime}_{\mathrm{G}\upgamma}-\rho^{\mathrm{G}\upgamma}(\theta)^{\prime}_{\mathrm G \upgamma}\,\eta^{\mathrm{G}\upgamma} -\hat{\mathbf{p}}^{\mathrm{G}\upgamma}\cdot{\mathbf{x}}^{\prime}_{\mathrm{G}\upgamma}] \\ {} -&\textstyle\sum_\upgamma\,\hat{\rho}^{\mathrm G\upgamma}\psi^{\mathrm G\upgamma}-\dfrac{1}{\theta}\mathbf{q}\,\mathrm{grad}\,\theta\geq 0 \end{aligned} $$
(74)

It will be enhanced by the constraining saturation condition with the Lagrange multiplicator λ with

$$\displaystyle \begin{aligned} \lambda\left((\mathrm{n}^{\mathbf{S}})^{\prime}_{\mathbf{S}}+(\mathrm{n}^{\mathbf{G}})^{\prime}_{\mathbf{S}}\right)\,. \end{aligned} $$
(75)

The overall gas balance in terms of molar concentration solved for \((\mathrm {n}^{\mathbf {G}})^{\prime }_{\mathbf {S}}\) reads

$$\displaystyle \begin{aligned} (\mathrm{n}^{\mathbf{G}})^{\prime}_{\mathbf{S}} = &-\dfrac{\mathrm{n}^{\mathbf{G}}}{\mathrm{c}^{\mathbf{G}}_{\mathrm{mol}}}\textstyle\sum_\upgamma(\mathrm{c}^{\mathrm{G}\upgamma}_{\mathrm{mol}})^{\prime}_{\mathrm{G}\upgamma}-\mathrm{n}^{\mathbf{G}}\textstyle\sum_\upgamma\mathrm{x}^{\mathrm{G}\upgamma}_{\mathrm{mol}}{\mathbf{D}}_{\mathrm{G}\upgamma}\cdot\mathbf I\\ {} &-\mathrm{grad}\,\mathrm{n}^{\mathbf{G}}\textstyle\sum_\upgamma\mathrm{x}^{\mathrm{G}\upgamma}_{\mathrm{mol}}\cdot{\mathbf{w}}_{\mathrm{G}\upgamma\mathrm{S}} +\textstyle\sum_\upgamma\dfrac{\hat{\rho}^{\mathrm G\upgamma}_{\mathrm{mol}}}{\mathrm{c}^{\mathbf{G}}_{\mathrm{mol}}}\,. \end{aligned} $$
(76)

A mass specific Helmholtz free energy ψ for the partial gas components is introduced with

$$\displaystyle \begin{aligned} \rho^{\mathrm{G}\upgamma}\psi^{\mathrm G\upgamma} = \mathrm{n}^{\mathbf{G}}\rho^{\mathrm{G}\upgamma\mathrm x}\psi^{\mathrm G\upgamma}=\mathrm{n}^{\mathbf{G}}\psi^{\mathrm G\upgamma\mathrm x}.\end{aligned} $$
(77)

For simplification we postulate that the Helmholtz free energy functions ψ α hold the following dependencies

$$\displaystyle \begin{aligned} \psi^{\mathbf{S}} &=\psi^{\mathbf{S}}({\mathbf{C}}_{\mathbf{S}},\theta)\\ {} \psi^{\mathrm G\upgamma\mathrm x} &= \psi^{\mathrm G\upgamma\mathrm x}(\rho^{\mathrm{G}\upgamma\mathrm x},\theta). \end{aligned} $$
(78)

With the chosen dependencies of the Helmholtz free energy functions on the process variables, the material time derivatives \((\psi ^{{\pmb {\alpha }}})^{\prime }_{{\pmb {\alpha }}}\) read

$$\displaystyle \begin{aligned} \psi^{\mathbf{S}}&:=\psi^{\mathbf{S}}({\mathbf{C}}_{\mathbf{S}},\theta) \quad \Rightarrow \quad (\psi^{\mathbf{S}})^{\prime}_{\mathbf{S}} = \mathrm 2\,\rho^{\mathbf{S}}{\mathbf{F}}_{\mathbf{S}}\displaystyle{\frac{\partial\psi^{\mathbf{S}}}{\partial{\mathbf{C}}_{\mathbf{S}}}}{\mathbf{F}}_{\mathbf{S}}^{\mathrm{T}}\cdot{\mathbf{D}}_{\mathbf{S}}+\frac{\partial\psi^{\mathbf{S}}}{\partial\theta}(\theta)^{\prime}_{\mathbf S}\\ {} \psi^{\mathrm G\upgamma\mathrm x}&:=\psi^{\mathrm G\upgamma\mathrm x}(\rho^{\mathrm{G}\upgamma\mathrm x},\theta) \quad \Rightarrow \quad (\psi^{\mathrm{G}\upgamma\mathrm x})^{\prime}_{\mathrm{G}\upgamma} = \frac{\partial\psi^{\mathrm G\upgamma\mathrm x}}{\partial\rho^{\mathrm{G}\upgamma\mathrm x}}(\rho^{\mathrm{G}\upgamma\mathrm x})^{\prime}_{\mathrm{G}\upgamma}+\frac{\partial\psi^{\mathrm G\upgamma\mathrm x}}{\partial\theta}(\theta)^{\prime}_{\mathrm G \upgamma}, \end{aligned} $$
(79)

the entropy inequality finally reads (sorted by the process variables and their derivatives):

$$\displaystyle \begin{aligned} &[{\mathbf{T}}^{\mathbf{S}}+\mathrm{n}^{\mathbf{S}}\lambda\mathbf I\,-2\,\rho^{\mathbf{S}}{\mathbf{F}}_{\mathbf{S}}\displaystyle{\frac{\partial\psi^{\mathbf{S}}}{\partial{\mathbf{C}}_{\mathbf{S}}}}{\mathbf{F}}_{\mathbf{S}}^{\mathrm{T}}]\cdot{\mathbf{D}}_{\mathbf{S}} -\rho^{\mathbf{S}}[\eta^{\mathbf{S}}+\frac{\partial\psi^{\mathbf{S}}}{\partial\theta}](\theta)^{\prime}_{\mathbf S}+ \\ {} &\textstyle\sum_\upgamma([{\mathbf{T}}^{\mathrm{G}\upgamma}+\mathrm{n}^{\mathbf{G}}\mathrm{x}^{\mathrm{G}\upgamma}\lambda\,\mathbf I]\cdot{\mathbf{D}}_{\mathrm{G}\upgamma} - \rho^{\mathrm{G}\upgamma}[\eta^{\mathrm{G}\upgamma}+\displaystyle{\frac{1}{\rho^{\mathrm{G}\upgamma\mathrm x}}}\frac{\partial\psi^{\mathrm G\upgamma\mathrm x}}{\partial\theta}](\theta)^{\prime}_{\mathrm G \upgamma}+\\ {} &[\mathrm{x}^{\mathrm{G}\upgamma}\lambda\displaystyle{\frac{\rho^{\mathrm{G}\upgamma}}{(\rho^{\mathrm{G}\upgamma\mathrm x})^{2}}}+\frac{\rho^{\mathrm{G}\upgamma}}{(\rho^{\mathrm{G}\upgamma\mathrm x})^{2}}\psi^{\mathrm G\upgamma\mathrm x}- \frac{\rho^{\mathrm{G}\upgamma}}{\rho^{\mathrm{G}\upgamma\mathrm x}}\frac{\partial\psi^{\mathrm G\upgamma\mathrm x}}{\partial\rho^{\mathrm{G}\upgamma\mathrm x}}](\rho^{\mathrm{G}\upgamma\mathrm x})^{\prime}_{\mathrm{G}\upgamma}-\\ {} &[\hat{\mathbf{p}}^{\mathrm{G}\upgamma}-\mathrm{grad}\>\mathrm{n}^{\mathbf{G}}\mathrm{x}^{\mathrm{G}\upgamma}\lambda]\cdot{\mathbf{w}}_{\mathrm{G}\upgamma\mathbf{S}}- \hat{\rho}^{\mathrm G\upgamma}[\psi^{\mathrm G\upgamma}+\displaystyle{\frac{\mathrm{x}^{\mathrm{G}\upgamma}\lambda}{\rho^{\mathrm{G}\upgamma\mathrm x}}}])- \displaystyle{\frac{1}{\theta}\,\mathbf{q}\,\mathrm{grad}\>\theta}\geq 0. \end{aligned} $$
(80)

The evaluation of the restrictions for the constitutive relations is presented in Sect. 4.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ricken, T. et al. (2020). Biological Driven Phase Transitions in Fully or Partly Saturated Porous Media: A Multi-Component FEM Simulation Based on the Theory of Porous Media. In: Giovine, P., Mariano, P.M., Mortara, G. (eds) Views on Microstructures in Granular Materials. Advances in Mechanics and Mathematics(), vol 44. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49267-0_8

Download citation

Publish with us

Policies and ethics