Skip to main content

X-Ray Tomography Experiments on Sand at Different Scales

  • Chapter
  • First Online:
Views on Microstructures in Granular Materials

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 44))

Abstract

This paper presents a brief introduction to some tools used for quantitative analysis of 3D fields coming from X-ray tomography with a view to elucidate micro-mechanisms of deformation in granular materials. A long-standing research objective in Laboratoire 3SR is to fully describe strain localisation in sand—results at different scales of analysis are presented and discussed alongside recent numerical advances which to our mind are the quintessential example of successful upscaling from micro to macro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.13140/RG.2.2.15390.02880.

References

  1. Alikarami, R., Andò, E., Gkiousas-Kapnisis, M., Torabi, A., and Viggiani, G. (2015), “Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography”, in: Acta Geotechnica, Vol. 10, No. 1, pp. 15–30.

    Article  Google Scholar 

  2. Alshibli, K. A. and Reed, A. H. (2012), Advances in computed tomography for geomaterials: GeoX 2010, John Wiley & Sons.

    Google Scholar 

  3. Anandarajah, A., Sobhan, K., and Kuganenthira, N. (1995), “Incremental stress-strain behavior of granular soil”, in: Journal of geotechnical engineering, Vol. 121, No. 1, pp. 57–68.

    Article  Google Scholar 

  4. Andò, E. (2013), “Experimental investigation of micro-structural changes in deforming granular media using x-ray tomography”, PhD thesis, Université de Grenoble.

    Google Scholar 

  5. Andò, E., Dijkstra, J., Roubin, E., Dano, C., and Boller, E. (2018), “A peek into the origins of creep in sand”, in: Granular Matter. Vol. 21, p. 11.

    Google Scholar 

  6. Andò, E., Hall, S. A., Viggiani, G., Desrues, J., and Bésuelle, P. (2012a), “Experimental micromechanics: grain-scale observation of sand deformation”, in: Géotechnique Letters, Vol. 2, No. 3, pp. 107–112.

    Article  Google Scholar 

  7. Andò, E., Hall, S. A., Viggiani, G., Desrues, J., and Bésuelle, P. (2012b), “Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach”, in: Acta Geotechnica, Vol. 7, No. 1, pp. 1–13.

    Article  Google Scholar 

  8. Andò, E., Hall, S., Viggiani, G., and Desrues, J. (2013), “Experimental micro-mechanics of granular media studied by x-ray tomography: recent results and challenges”, in: Géotechnique Letters, Vol. 3, pp. 142–146.

    Article  Google Scholar 

  9. Andò, E., Salvatore, E., Desrues, J., Charrier, P., Toni, J.-B., Modoni, G., and Viggiani, G. (2017), “Strain Localisation in Sand in Cycles of Triaxial Compression and Extension: Continuum and Grain-Scale Analysis”, in: International Workshop on Bifurcation and Degradation in Geomaterials, Springer, pp. 489–497.

    Google Scholar 

  10. Tengattini, Alessandro, Andò, E., and Viggiani, C. 3D Metrology in Geomaterials. Presented at the 19th Hercules Specialized Course in Quantitative Imaging using X-rays and Neutrons, University of Grenoble, Grenoble, France, 15–19 May 2017.

    Google Scholar 

  11. Bay, B. K. (2008), “Methods and applications of digital volume correlation”, in: The Journal of Strain Analysis for Engineering Design, Vol. 43, No. 8, pp. 745–760.

    Article  Google Scholar 

  12. Butterfield, R., Harkness, R. M., and Andrews, K. Z. (1970), “A stereo-photogrammetric technique for measuring displacement fields”, in: Géotechnique, Vol. 20, No. 3, pp. 308–314.

    Article  Google Scholar 

  13. Calvetti, F., Viggiani, G., and Tamagnini, C. (2002), “A numerical investigation of the incremental behavior of granular soils”, in: Rivista Italiana di Geotecnica, Vol. 3/03, pp. 1–29.

    Google Scholar 

  14. Desrues, J., Andò, E., Bèsuelle, P., Viggiani, G., Debove, L., Charrier, P., and Toni, J. (2017), “Localisation Precursors in Geomaterials?”, in: International Workshop on Bifurcation and Degradation in Geomaterials, Springer, pp. 3–10.

    Google Scholar 

  15. Desrues, J., Mevoli, F., Viggiani, G., Andò, E., and Debove, L. (2018), “How does strain localise in standard triaxial tests on sand: revisiting the mechanism 20 years later”, in: Mechanics Research Communications, Vol. 92, pp. 142–146.

    Article  Google Scholar 

  16. Desrues, J. and Andò, E. (2015), “Strain localisation in granular media”, in: Comptes Rendus Physique, Vol. 16, No. 1, pp. 26–36.

    Article  Google Scholar 

  17. Desrues, J., Chambon, R., Mokni, M., and Mazerolle, F. (1996), “Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography”, in: Géotechnique, Vol. 46, No. 3, pp. 529–546.

    Article  Google Scholar 

  18. Desrues, J. and Viggiani, G. (2004), “Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry”, in: International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 28, pp. 279–321.

    Article  Google Scholar 

  19. Desrues, J., Viggiani, G., and Besuelle, P. (2010), Advances in X-ray Tomography for Geomaterials, vol. 118, John Wiley & Sons.

    Google Scholar 

  20. Guo, N. and Zhao, J. (2014), “A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media”, in: International Journal for Numerical Methods in Engineering, Vol. 99, No. 11, pp. 789–818.

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, N. and Zhao, J. (2016), “Multiscale insights into classical geomechanics problems”, in: International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 40, No. 3, pp. 367–390.

    Article  Google Scholar 

  22. Hall, S., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., and Besuelle, P. (2010), “Discrete and continuum experimental study of localised deformation in Hostun sand under triaxial compression using X-ray μCT and 3D digital image correlation”, in: Géotechnique, Vol. 60, No. 5, pp. 315–322.

    Article  Google Scholar 

  23. Hall, S. A. (2012), “Digital image correlation in experimental geomechanics”, in: ALERT Geomaterials Doctoral Summer School, pp. 69–102.

    Google Scholar 

  24. Hasan, A. and Alshibli, K. (2012), “Three dimensional fabric evolution of sheared sand”, in: Granular Matter, Vol. 14, No. 4, pp. 469–482.

    Article  Google Scholar 

  25. Karatza, Z., Andò, E., Papanicolopulos, S.-A., Ooi, J., and Viggiani, G. (2017), “Evolution of deformation and breakage in sand studied using X-ray tomography”, in: Géotechnique, pp. 1–11.

    Google Scholar 

  26. Kawamoto, R., Andò, E., Viggiani, G., and Andrade, J. E. (2018), “All you need is shape: predicting shear banding in sand with LS-DEM”, in: Journal of the Mechanics and Physics of Solids, Vol. 111, pp. 375–392.

    Article  Google Scholar 

  27. Nitka, M., Combe, G., Dascalu, C., and Desrues, J. (2011), “Two-scale modeling of granular materials: a DEM-FEM approach”, in: Granular Matter, Vol. 13, No. 3, pp. 277–281.

    Article  Google Scholar 

  28. Otani, J. and Obara, Y. (2004), “X-Ray CT for geomaterials: Soils, concrete, rocks”, in: Proceedings of the International Workshop on X-Ray CT for Geomaterials: GEOX2003, Kimamoto, Japan, Royal Swets and Zeitlinger: Lisse.

    Book  Google Scholar 

  29. Roscoe, K. H. (1970), “The influence of strains in soil mechanics”, in: Geotechnique, Vol. 20, No. 2, pp. 129–170.

    Article  Google Scholar 

  30. Royis, P. and Doanh, T. (1998), “Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equations”, in: International journal for numerical and analytical methods in geomechanics, Vol. 22, No. 2, pp. 97–132.

    Article  MATH  Google Scholar 

  31. Salvatore, E., Andò, E., Modoni, G., and Viggiani, G. (2016), “Micromechanical Study of Cyclically Loaded Sands with x-ray Microtomography and Digital Image Correlation”, in: Procedia Engineering, Vol. 158, pp. 92–97.

    Article  Google Scholar 

  32. Shahin, G., Desrues, J., Dal Pont, S., Combe, G., and Argilaga, A. (2016), “A study of the influence of REV variability in double-scale FEM× DEM analysis”, in: International Journal for Numerical Methods in Engineering, Vol. 107, No. 10, pp. 882–900.

    Article  MathSciNet  MATH  Google Scholar 

  33. Smith, T., Bay, B., and Rashid, M. (2002), “Digital Volume Correlation Including Rotational Degrees of Freedom during Minimization”, in: Experimental Mechanics, Vol. 42, No. 3, pp. 272–278.

    Article  Google Scholar 

  34. Sutton, M. A., Orteu, J. J., and Schreier, H. (2009), Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer Science & Business Media.

    Google Scholar 

  35. Tamagnini, C., Calvetti, F., and Viggiani, G. (2005), “An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils”, in: Journal of Engineering Mathematics, Vol. 52, No. 1, pp. 265–291.

    Article  MathSciNet  MATH  Google Scholar 

  36. Tengattini, A. and Andò, E. (2015), “Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D”, in: Measurement Science and Technology, Vol. 26, No. 9, p. 095606.

    Google Scholar 

  37. Tudisco, E., Andò, E., Cailletaud, R., and Hall, S. A. (2017), “TomoWarp2: a local digital volume correlation code”, in: SoftwareX, Vol. 6, pp. 267–270.

    Article  Google Scholar 

  38. Viggiani, G., Andò, E., Takano, D., and Santamarina, J. (2015), “Laboratory X-ray tomography: A valuable experimental tool for revealing processes in soils”, in: Geotechnical Testing Journal, Vol. 38, No. 1, pp. 61–71.

    Google Scholar 

  39. Viggiani, G. and Hall, S. A. (2012), “Full-field measurements in experimental geomechanics: historical perspective, current trends and recent results”, in: ALERT Doctoral School, pp. 3–68.

    Google Scholar 

  40. Wiebicke, M., Andò, E., Herle, I., and Viggiani, C. (2017a), “On the metrology of interparticle contacts in sand from x-ray tomography images”, in: Measurement Science and Technology.

    Book  Google Scholar 

  41. Wiebicke, M., Andò, E., Salvatore, E., Viggiani, G., and Herle, I. (2017b), “Experimental measurement of granular fabric and its evolution under shearing”, in: EPJ Web of Conferences, vol. 140, EDP Sciences, p. 02020.

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program FP7-ERC-IDEAS Advanced Grant Agreement n 290963 (SOMEF).Laboratoire 3SR is part of the LabEx Tec 21 (Investissements d’Avenir—grant agreement n ANR-11-LABX-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioacchino Viggiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andò, E., Viggiani, G., Desrues, J. (2020). X-Ray Tomography Experiments on Sand at Different Scales. In: Giovine, P., Mariano, P.M., Mortara, G. (eds) Views on Microstructures in Granular Materials. Advances in Mechanics and Mathematics(), vol 44. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49267-0_1

Download citation

Publish with us

Policies and ethics