Skip to main content

Vibration Reduction of a Composite Plate with Inertial Nonlinear Energy Sink

  • Conference paper
  • First Online:
Vibration Engineering for a Sustainable Future
  • 600 Accesses

Abstract

In the practical engineering, the vibration of composite plate structures will produce many resonance modes in the low-frequency region. Therefore, it is necessary to adopt a device which can suppress the vibration in broadband with a small mass. In this chapter, an inertial nonlinear energy sink (NES) is used to suppress concentrated resonance modes of composite plate structures. Based on the Galerkin discretization method and the harmonic balance method (HBM), the response of the plate is studied in this chapter. The results show that it can effectively suppress the vibration of the primary structure of the resonance frequencies. The vibration reduction effect of the inertial NES is compared with the system without NES, which greatly reflects the superiority of the inertial NES. It provides a good reference value for the vibration suppression scheme of the composite plate structure in a wide frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324–332 (2001)

    Article  Google Scholar 

  2. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Article  Google Scholar 

  3. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. 12, 643–651 (2007)

    Article  Google Scholar 

  4. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017)

    Article  Google Scholar 

  5. Zhang, W.F., Liu, Y., Cao, S.L., Chen, J.H., Zhang, Z.X., Zhang, J.Z.: Targeted energy transfer between 2-D wing and nonlinear energy sinks and their dynamic behaviors. Nonlinear Dyn. 90, 1841–1850 (2017)

    Article  Google Scholar 

  6. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech. Syst. Signal Process. 84, 128–157 (2017)

    Article  Google Scholar 

  7. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Article  Google Scholar 

  8. Smith, M.C.: Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control. 47, 1648–1662 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chen, M.Z.Q., Papageorgiou, C., Scheibe, F., Wang, F.C., Smith, M.C.: The missing mechanical circuit element. IEEE Circuits Syst. Mag. 9, 10–26 (2009)

    Article  Google Scholar 

  10. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)

    Article  Google Scholar 

  11. Wang, A.W., Chen, H.Y., Hao, Y.X., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018)

    Article  Google Scholar 

  12. Song, M.T., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Part B-Eng. 134, 106–113 (2018)

    Article  Google Scholar 

  13. Zhang, Y.W., Zhang, Z., Chen, L.Q., Yang, T.Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82, 61–71 (2015)

    Article  MathSciNet  Google Scholar 

  14. Luo, A.C.J., Huang, J.Z.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control. 18, 1661–1674 (2012)

    Article  MathSciNet  Google Scholar 

  15. Dai, H.H., Jing, X.J., Wang, Y., Yue, X.K., Yuan, J.P.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Pr. 105, 214–240 (2018)

    Article  Google Scholar 

  16. Li, X.Q., Song, M.T., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, HY., Ding, H., Chen, LQ. (2021). Vibration Reduction of a Composite Plate with Inertial Nonlinear Energy Sink. In: Oberst, S., Halkon, B., Ji, J., Brown, T. (eds) Vibration Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-48153-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48153-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48152-0

  • Online ISBN: 978-3-030-48153-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics