Skip to main content

Clinical Requirements for Mechanical Circulatory Support Devices

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

As pump technology advances, the role of mechanical circulatory support (MCS) continues to expand. Whether utilized temporarily for recovery or long term to improve survival and quality of life, the goals of MCS are the same: maintain adequate end-organ perfusion, reduce myocardial oxygen demand, and provide adequate coronary perfusion. Candidates for long-term MCS should undergo a rigorous preoperative evaluation including hemodynamic factors, clinical examination, laboratory studies, and psychosocial assessment prior to device implantation. Many patient factors, particularly renal and hepatic function, may improve during long-term MCS and provide the opportunity for previously contraindicated patients to be listed for a heart transplant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    CAS  PubMed  Google Scholar 

  2. Frazier OH, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122(6):1186–95.

    CAS  PubMed  Google Scholar 

  3. Deng MC, Edwards LB, Hertz MI, Rowe AW, Keck BM, Kormos R, et al. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report–2005. J Heart Lung Transplant. 2005;24(9):1182–7.

    PubMed  Google Scholar 

  4. Slaughter MS, Tsui SS, El-Banayosy A, Sun BC, Kormos RL, Mueller DK, et al. Results of a multicenter clinical trial with the thoratec implantable ventricular assist device. J Thorac Cardiovasc Surg. 2007;133(6):1573–80.

    PubMed  Google Scholar 

  5. Baldwin JT, Robbins RC, National Heart L, Blood Institute Working Group. Executive summary for the National Heart, Lung, and Blood Institute Working Group on next generation ventricular assist devices for destination therapy. Semin Thorac Cardiovasc Surg. 2005;17(4):369–71.

    PubMed  Google Scholar 

  6. Frazier OH, Kirklin JK. Mechanical circulatory support. Oxford: Elsevier; 2006.

    Google Scholar 

  7. Griffith BP, Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20; discussion S4–6.

    CAS  PubMed  Google Scholar 

  8. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29(1):1–10.

    PubMed  PubMed Central  Google Scholar 

  9. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    PubMed  Google Scholar 

  10. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36(10):1080–6.

    PubMed  Google Scholar 

  11. Gibbon JH Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37(3):171–85; passim.

    PubMed  Google Scholar 

  12. Miller PE, Solomon MA, McAreavey D. Advanced percutaneous mechanical circulatory support devices for cardiogenic shock. Crit Care Med. 2017;45(11):1922–9.

    PubMed  PubMed Central  Google Scholar 

  13. Merrill AJ, Morrison JL, Branno ES. Concentration of renin in renal venous blood in patients with chronic heart failure. Am J Med. 1946;1(5):468.

    CAS  PubMed  Google Scholar 

  14. Zhang J, Pfaffendorf M, van Zwieten PA. Hemodynamic effects of angiotensin II and the influence of angiotensin receptor antagonists in pithed rabbits. J Cardiovasc Pharmacol. 1995;25(5):724–31.

    CAS  PubMed  Google Scholar 

  15. Hall JE, Coleman TG, Guyton AC, Balfe JW, Salgado HC. Intrarenal role of angiotensin II and [des-Asp1]angiotensin II. Am J Phys. 1979;236(3):F252–9.

    CAS  Google Scholar 

  16. Pratt JH. Role of angiotensin II in potassium-mediated stimulation of aldosterone secretion in the dog. J Clin Invest. 1982;70(3):667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984;55(5):669–75.

    CAS  PubMed  Google Scholar 

  18. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73(5):913–9.

    PubMed  Google Scholar 

  19. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, et al. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol. 1984;54(7):783–6.

    CAS  PubMed  Google Scholar 

  20. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307(4):205–11.

    CAS  PubMed  Google Scholar 

  21. Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57(4):1104–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    CAS  PubMed  Google Scholar 

  23. Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev. 2010;15(6):543–62.

    CAS  PubMed  Google Scholar 

  24. Katz AM. Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am. 2003;87(2):303–16.

    CAS  PubMed  Google Scholar 

  25. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236–41.

    CAS  PubMed  Google Scholar 

  26. Brunner-La Rocca HP, Kaye DM, Woods RL, Hastings J, Esler MD. Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol. 2001;37(5):1221–7.

    CAS  PubMed  Google Scholar 

  27. Jensen KT, Eiskjaer H, Carstens J, Pedersen EB. Renal effects of brain natriuretic peptide in patients with congestive heart failure. Clin Sci (Lond). 1999;96(1):5–15.

    CAS  Google Scholar 

  28. Greenberg BH. Congestive heart failure textbook. 2nd ed. Philadelphia: Lippincott Williams & Williams; 2000.

    Google Scholar 

  29. Kapur N, Esposito M. use of acute mechanical circulatory support devices in the setting of cardiogenic shock: pump fiction or an emerging reality? Latest in cardiology [Internet]. 2016. Available from: https://www.acc.org/latest-in-cardiology/articles/2016/08/31/08/01/use-of-acute-mechanical-circulatory-support-devices.

  30. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J. 1969;9(2):189–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation. 2012;125(10):1304–15.

    PubMed  Google Scholar 

  32. Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L, Kormos RL, et al. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant. 2009;28(6):535–41.

    PubMed  Google Scholar 

  33. Ranganath NK, Smith DE, Moazami N. The Achilles’ heel of left ventricular assist device therapy: right ventricle. Curr Opin Organ Transplant. 2018;23(3):295–300.

    PubMed  Google Scholar 

  34. Cowger J, Sundareswaran K, Rogers JG, Park SJ, Pagani FD, Bhat G, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61(3):313–21.

    CAS  PubMed  Google Scholar 

  35. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63; discussion 63–4.

    PubMed  PubMed Central  Google Scholar 

  36. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    PubMed  Google Scholar 

  37. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21.

    PubMed  PubMed Central  Google Scholar 

  38. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(10):1102–7.

    PubMed  Google Scholar 

  39. Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9.

    PubMed  Google Scholar 

  40. Boegershausen N, Zayat R, Aljalloud A, Musetti G, Goetzenich A, Tewarie L, et al. Risk factors for the development of right ventricular failure after left ventricular assist device implantation-a single-centre retrospective with focus on deformation imaging. Eur J Cardiothorac Surg. 2017;52(6):1069–76.

    PubMed  Google Scholar 

  41. Kashiyama N, Toda K, Nakamura T, Miyagawa S, Nishi H, Yoshikawa Y, et al. Evaluation of right ventricular function using liver stiffness in patients with left ventricular assist device. Eur J Cardiothorac Surg. 2017;51(4):715–21.

    PubMed  PubMed Central  Google Scholar 

  42. Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35(1):67–73.

    PubMed  Google Scholar 

  43. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6.

    PubMed  Google Scholar 

  44. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39.

    PubMed  Google Scholar 

  45. Rose EA, Moskowitz AJ, Packer M, Sollano JA, Williams DL, Tierney AR, et al. The REMATCH trial: rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann Thorac Surg. 1999;67(3):723–30.

    CAS  PubMed  Google Scholar 

  46. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.

    PubMed  Google Scholar 

  47. Reinhartz O, Farrar DJ, Hershon JH, Avery GJ Jr, Haeusslein EA, Hill JD. Importance of preoperative liver function as a predictor of survival in patients supported with Thoratec ventricular assist devices as a bridge to transplantation. J Thorac Cardiovasc Surg. 1998;116(4):633–40.

    CAS  PubMed  Google Scholar 

  48. Aaronson KD, Patel H, Pagani FD. Patient selection for left ventricular assist device therapy. Ann Thorac Surg. 2003;75(6 Suppl):S29–35.

    PubMed  Google Scholar 

  49. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116(5):497–505.

    PubMed  Google Scholar 

  50. Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2010;60(2):99–119.

    PubMed  Google Scholar 

  51. Holdy K, Dembitsky W, Eaton LL, Chillcott S, Stahovich M, Rasmusson B, et al. Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24(10):1690–6.

    PubMed  Google Scholar 

  52. Sharma R, Anker SD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol. 2002;85(1):161–71.

    PubMed  Google Scholar 

  53. Mano A, Fujita K, Uenomachi K, Kazama K, Katabuchi M, Wada K, et al. Body mass index is a useful predictor of prognosis after left ventricular assist system implantation. J Heart Lung Transplant. 2009;28(5):428–33.

    PubMed  Google Scholar 

  54. Coyle LA, Ising MS, Gallagher C, Bhat G, Kurien S, Sobieski MA, et al. Destination therapy: one-year outcomes in patients with a body mass index greater than 30. Artif Organs. 2010;34(2):93–7.

    PubMed  Google Scholar 

  55. Miller LW. Listing criteria for cardiac transplantation: results of an American Society of Transplant Physicians-National Institutes of Health conference. Transplantation. 1998;66(7):947–51.

    CAS  PubMed  Google Scholar 

  56. Cogswell R, Smith E, Hamel A, Bauman L, Herr A, Duval S, et al. Substance abuse at the time of left ventricular assist device implantation is associated with increased mortality. J Heart Lung Transplant. 2014;33(10):1048–55.

    PubMed  Google Scholar 

  57. Kavarana MN, Pessin-Minsley MS, Urtecho J, Catanese KA, Flannery M, Oz MC, et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg. 2002;73(3):745–50.

    PubMed  Google Scholar 

  58. Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25(1):1–6.

    PubMed  Google Scholar 

  59. Takeda K, Takayama H, Colombo PC, Yuzefpolskaya M, Fukuhara S, Han J, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34(8):1024–32.

    PubMed  Google Scholar 

  60. Kapelios CJ, Charitos C, Kaldara E, Malliaras K, Nana E, Pantsios C, et al. Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2015;34(12):1604–10.

    PubMed  Google Scholar 

  61. Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, et al. Timing of temporary right ventricular assist device insertion for severe right heart failure after left ventricular assist device implantation. ASAIO J. 2013;59(6):564–9.

    PubMed  Google Scholar 

  62. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30(2):167–87.

    PubMed  Google Scholar 

  63. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Driessen MM, Baggen VJ, Freling HG, Pieper PG, van Dijk AP, Doevendans PA, et al. Pressure overloaded right ventricles: a multicenter study on the importance of trabeculae in RV function measured by CMR. Int J Cardiovasc Imaging. 2014;30(3):599–608.

    PubMed  Google Scholar 

  65. Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, et al. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation. 2011;124(11 Suppl):S179–86.

    PubMed  Google Scholar 

  66. Deuse T, Schirmer J, Kubik M, Reichenspurner H. Isolated permanent right ventricular assistance using the HVAD continuous-flow pump. Ann Thorac Surg. 2013;95(4):1434–6.

    PubMed  Google Scholar 

  67. Shehab S, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Robson D, et al. Long-term biventricular HeartWare ventricular assist device support–case series of right atrial and right ventricular implantation outcomes. J Heart Lung Transplant. 2016;35(4):466–73.

    PubMed  Google Scholar 

  68. Krabatsch T, Hennig E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, et al. Evaluation of the HeartWare HVAD centrifugal pump for right ventricular assistance in an in vitro model. ASAIO J. 2011;57(3):183–7.

    PubMed  Google Scholar 

  69. McGee E Jr, Chorpenning K, Brown MC, Breznock E, Larose JA, Tamez D. In vivo evaluation of the HeartWare MVAD pump. J Heart Lung Transplant. 2014;33(4):366–71.

    PubMed  Google Scholar 

  70. Shanewise J. Cardiac transplantation. Anesthesiol Clin North Am. 2004;22(4):753–65.

    PubMed  Google Scholar 

  71. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    PubMed  Google Scholar 

  72. Berthiaume JM, Kirk JA, Ranek MJ, Lyon RC, Sheikh F, Jensen BC, et al. Pathophysiology of heart failure and an overview of therapies. In: Buja LM, Butany J, editors. Cardiovascular pathology. 4th ed. New York: Elsevier; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Moazami MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranganath, N.K., Phillips, K.G., Moazami, N. (2020). Clinical Requirements for Mechanical Circulatory Support Devices. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics