Skip to main content

Improving Clinical Outcomes: A Targeted Approach

  • Chapter
  • First Online:
Ventricular Assist Devices in Advanced-Stage Heart Failure
  • 1449 Accesses

Abstract

Mechanical cardiac support, in the form of an implantable left ventricular assist device, is no longer considered an experimental intervention for patients with advanced left ventricular dysfunction. The considerable expense associated with each implant, however, makes it incumbent upon the clinician to ensure that only appropriate and timely referred candidates are selected. Medical and psychosocial considerations are paramount and both have been repeatedly shown to impact long-term outcomes. Patients with limited support systems, multiple comorbidities, marginal hemodynamics, right heart dysfunction, frailty, and hematologic problems such as hypercoagulability and/or coagulopathy may not be ideal device recipients. Predictive algorithms have been developed to help identify high- and low-risk patients, but the algorithms often prove inaccurate. Regardless of the estimated risk, all efforts must be made preoperatively to reduce or even eliminate any potential medical problems that might increase the surgical risk. Intraoperative management is, of course, critical as well. Beta-agonists, inotropes, and short-acting pulmonary vasodilators such as nitric oxide or inhaled prostacyclin should be introduced in the operating room, as needed. Successful separation from cardiopulmonary bypass inevitably requires patience and careful monitoring of right ventricular size, shape, and function either via direct vision or with transesophageal echocardiography. Postoperative challenges to be anticipated include gastrointestinal bleeding secondary to arteriovenous malformations, pump thrombosis, ischemic and hemorrhagic cerebrovascular events, and aortic insufficiency. The possibility of infection must be entertained at all times. Standard prophylactic antibiotic regimens should be set in place at all implanting centers based upon institution-specific data. These considerations in association with early ambulation and aggressive rehabilitation should help ensure a successful long-term outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The APACHE II score was developed from a multi-institutional cohort of 5,815 critically ill patients and consists of 13 preoperative variables: temperature, mean arterial pressure, heart rate, respiratory rate, partial pressure of arterial oxygen or alveolar–arterial oxygen gradient if the fraction of inspired oxygen is 50 % or more, arterial pH, serum sodium, serum potassium, serum creatinine, hematocrit, white blood cell count, Glasgow Coma Score, and age. See Crit Care Med. 1985;13:818–29.

  2. 2.

    SHFM was derived from a cohort of 1,125 New York Heart Association (NYHA) class IIIB or IV patients. It uses 21 variables weighted by hazard ratio: age, gender, NYHA class, weight, ejection fraction, systolic blood pressure, presence of ischemic cardiomyopathy, daily furosemide equivalent dose, inotrope use, statin use, allopurinol use, angiotensin-converting enzyme use, β-blocker use, angiotensin receptor blocker use, potassium-sparing diuretic use, implantable cardioverter-defibrillator use, hemoglobin, lymphocyte percent on complete blood count differential, serum uric acid, serum cholesterol, and serum sodium. For the purposes of the Hopkins analysis, two additional variables were added: intra-aortic balloon pump or ventilator or both and inotrope therapy. See Circulation. 2006;113:1424–33.

References

  1. Stehlik J et al. The registry of the international society for heart and lung transplantation: twenty-ninth adult heart transplant report–2012. J Heart Lung Transplant. 2012;31(10):1052–64.

    PubMed  Google Scholar 

  2. Taylor DO et al. Registry of the international society for heart and lung transplantation: twenty-fourth official adult heart transplant report–2007. J Heart Lung Transplant. 2007;26(8):769–81.

    PubMed  Google Scholar 

  3. Dennis CC. The use of pump oxygenator support in heart failure. J Oslo City Hosp. 1961;11:107–8.

    PubMed  CAS  Google Scholar 

  4. Spencer FC et al. Assisted circulation for cardiac failure following intracardiac surgery with cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1965;49:56–73.

    PubMed  CAS  Google Scholar 

  5. Bernhard WF et al. An appraisal of blood trauma and blood-prosthetic interface during left ventricular bypass in the calf and humans. Ann Thorac Surg. 1978;26(5):427–37.

    PubMed  CAS  Google Scholar 

  6. Norman JC et al. Intracorporeal (abdominal) left ventricular assist devices or partial artificial hearts: a five-year clinical experience. Arch Surg. 1981;116(11):1441–5.

    PubMed  CAS  Google Scholar 

  7. Rose EA et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    PubMed  CAS  Google Scholar 

  8. Barge-Caballero E et al. Usefulness of the INTERMACS scale for predicting outcomes after urgent heart transplantation. Rev Esp Cardiol. 2011;64(3):193–200.

    PubMed  Google Scholar 

  9. Boyle AJ et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30(4):402–7.

    PubMed  Google Scholar 

  10. Alba AC et al. Usefulness of the INTERMACS scale to predict outcomes after mechanical assist device implantation. J Heart Lung Transplant. 2009;28(8):827–33.

    PubMed  Google Scholar 

  11. Slaughter MS et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39.

    PubMed  Google Scholar 

  12. Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol. 2013;61(12):1209–21.

    PubMed  Google Scholar 

  13. Hunt SA et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–90.

    PubMed  Google Scholar 

  14. Lindenfeld J et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–194.

    PubMed  Google Scholar 

  15. Dickstein K et al. 2010 focused update of ESC guidelines on device therapy in heart failure: an update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC Guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur J Heart Fail. 2010;12(11):1143–53.

    PubMed  Google Scholar 

  16. McMurray JJ et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

    Google Scholar 

  17. Peura JL et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126(22):2648–67.

    PubMed  Google Scholar 

  18. Rector TS et al. Use of left ventricular assist devices as destination therapy in end-stage congestive heart failure: a systematic review. VA-ESP Project #09-009; 2012.

    Google Scholar 

  19. Oz MC et al. Selection criteria for placement of left ventricular assist devices. Am Heart J. 1995;129(1):173–7.

    PubMed  CAS  Google Scholar 

  20. Rao V et al. Revised screening scale to predict survival after insertion of a left ventricular assist device. J Thorac Cardiovasc Surg. 2003;125(4):855–62.

    PubMed  Google Scholar 

  21. Lietz K et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116(5): 497–505.

    PubMed  Google Scholar 

  22. Schaffer JM et al. Evaluation of risk indices in continuous-flow left ventricular assist device patients. Ann Thorac Surg. 2009;88(6):1889–96.

    PubMed  Google Scholar 

  23. Cowger J et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61(3):313–21.

    PubMed  CAS  Google Scholar 

  24. Matthews JC et al. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.

    PubMed  Google Scholar 

  25. Fitzpatrick 3rd JR et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.

    PubMed  Google Scholar 

  26. Kirklin JK et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29(1):1–10.

    PubMed  Google Scholar 

  27. Kormos RL et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    PubMed  Google Scholar 

  28. Korabathina R et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80(4):593–600.

    PubMed  Google Scholar 

  29. Morrison DA. Guilt by association: after enhanced interrogation, the data yield a confession. Catheter Cardiovasc Interv. 2012;80(4):601–2.

    PubMed  Google Scholar 

  30. Grant AD et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.

    PubMed  Google Scholar 

  31. Wang L et al. Predicting right ventricular failure in patients undergoing ventricular assist device implantation using speckle tracking imaging. J Am Coll Cardiol. 2012;59(13s1):E1019. doi:10.1016/S0735-1097(12)61020-1.

  32. Wang L et al. Pre-operative velocity vector imaging to predict the need for right ventricular support in patients undergoing left ventricular assist device implantation. J Heart Lung Transplant. 2013;32(4):S273–4.

    Google Scholar 

  33. Munoz-Garcia AJ et al. Survival and predictive factors of mortality after 30 days in patients treated with percutaneous implantation of the CoreValve aortic prosthesis. Am Heart J. 2012;163(2):288–94.

    PubMed  Google Scholar 

  34. Dewey TM. Frailty scores and the writing on the wall. JACC Cardiovasc Interv. 2012;5(5):497–8.

    PubMed  Google Scholar 

  35. Flint KM et al. Frailty and the selection of patients for destination therapy left ventricular assist device. Circ Heart Fail. 2012;5(2):286–93.

    PubMed  Google Scholar 

  36. Heise D et al. Recombinant activated factor VII (Novo7) in patients with ventricular assist devices: case report and review of the current literature. J Cardiothorac Surg. 2007;2:47.

    PubMed  Google Scholar 

  37. Fries D et al. Coagulation monitoring and management of anticoagulation during cardiac assist device support. Ann Thorac Surg. 2003;76(5):1593–7.

    PubMed  Google Scholar 

  38. Zucker MJ et al. Cardiac transplantation and/or mechanical circulatory support device placement using heparin anti-coagulation in the presence of acute heparin-induced thrombocytopenia. J Heart Lung Transplant. 2010;29(1):53–60.

    PubMed  Google Scholar 

  39. Kiernan MS et al. Right ventricular failure in patients with continuous-flow left ventricular assist devices: incidence and risk factors from INTERMACS. J Heart Lung Transplant. 2012;31(4):S110–1.

    Google Scholar 

  40. Cleveland Jr JC et al. Survival after biventricular assist device implantation: an analysis of the Interagency Registry for Mechanically Assisted Circulatory Support database. J Heart Lung Transplant. 2011;30(8):862–9.

    PubMed  Google Scholar 

  41. Kirklin JK et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32(2):141–56.

    PubMed  Google Scholar 

  42. Lainez R et al. Right ventricular function and left ventricular assist device placement: clinical considerations and outcomes. Ochsner J. 2010;10(4):241–4.

    PubMed  Google Scholar 

  43. Drakos SG et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.

    PubMed  Google Scholar 

  44. Ochiai Y et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106(12 Suppl 1): I198–202.

    PubMed  Google Scholar 

  45. Fukamachi K et al. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68(6):2181–4.

    PubMed  CAS  Google Scholar 

  46. Meineri M et al. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26(2):217–29.

    PubMed  Google Scholar 

  47. Puhlman M. Continuous-flow left ventricular assist device and the right ventricle. AACN Adv Crit Care. 2012;23(1):86–90.

    PubMed  Google Scholar 

  48. John R et al. Right ventricular failure–a continuing problem in patients with left ventricular assist device support. J Cardiovasc Transl Res. 2010;3(6):604–11.

    PubMed  Google Scholar 

  49. Henderson KK et al. Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail. 2009;2(3):243–52.

    PubMed  Google Scholar 

  50. Uriel N et al. Thyroid deficiency is common in advanced heart failure and associated with increased operative mortality after assist device implantation. J Heart Lung Transplant. 2010;28(2):S25.

    Google Scholar 

  51. Neragi-Miandoab S et al. Right ventricular dysfunction following continuous flow left ventricular assist device placement in 51 patients: predicators and outcomes. J Cardiothorac Surg. 2012;7:60.

    PubMed  Google Scholar 

  52. Morgan JA et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403.

    PubMed  Google Scholar 

  53. Potapov E et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8.

    PubMed  Google Scholar 

  54. Macdonald PS et al. Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant. 1998;17(3):312–6.

    PubMed  CAS  Google Scholar 

  55. Chang JC et al. Hemodynamic effect of inhaled nitric oxide in dilated cardiomyopathy patients on LVAD support. ASAIO J. 1997;43(5):M418–21.

    PubMed  CAS  Google Scholar 

  56. Radovancevic B et al. Nitric oxide versus prostaglandin E1 for reduction of pulmonary hypertension in heart transplant candidates. J Heart Lung Transplant. 2005;24(6):690–5.

    PubMed  Google Scholar 

  57. Murali S et al. Reversibility of pulmonary hypertension in congestive heart failure patients evaluated for cardiac transplantation: comparative effects of various pharmacologic agents. Am Heart J. 1991;122(5):1375–81.

    PubMed  CAS  Google Scholar 

  58. Tedford RJ et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.

    PubMed  CAS  Google Scholar 

  59. Estep JD et al. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging. 2010;3(10):1049–64.

    PubMed  Google Scholar 

  60. Rich JD. Right ventricular failure in patients with left ventricular assist devices. Cardiol Clin. 2012;30(2):291–302.

    PubMed  Google Scholar 

  61. Baumwol J et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30(8):888–95.

    PubMed  Google Scholar 

  62. Cohn WE. New tools and techniques to facilitate off-pump left ventricular assist device implantation. Tex Heart Inst J. 2010;37(5):559–61.

    PubMed  Google Scholar 

  63. Feldman D et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    PubMed  Google Scholar 

  64. Tector AJ et al. Transition from cardiopulmonary bypass to the HeartMate left ventricular assist device. Ann Thorac Surg. 1998;65(3):643–6.

    PubMed  CAS  Google Scholar 

  65. John R et al. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;136(5):1318–23.

    PubMed  Google Scholar 

  66. Slaughter MS et al. Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy. J Heart Lung Transplant. 2010;29(6):616–24.

    PubMed  Google Scholar 

  67. Menon AK et al. Low stroke rate and few thrombo-embolic events after HeartMate II implantation under mild anticoagulation. Eur J Cardiothorac Surg. 2012;42(2):319–23. discussion 323.

    PubMed  Google Scholar 

  68. Morshuis M et al. A modified technique for implantation of the HeartWare left ventricular assist device when using bivalirudin anticoagulation in patients with acute heparin-induced thrombocytopenia. Interact Cardiovasc Thorac Surg. 2013;17(2):225–6.

    Google Scholar 

  69. Awad H et al. Thrombosis during off pump LVAD placement in a patient with heparin induced thrombocytopenia using bivalirudin. J Cardiothorac Surg. 2013;8(1):115.

    PubMed  Google Scholar 

  70. Schmitz ML et al. Management of a pediatric patient on the Berlin Heart Excor ventricular assist device with argatroban after heparin-induced thrombocytopenia. ASAIO J. 2008;54(5): 546–7.

    PubMed  Google Scholar 

  71. Takahama T, Kanai F, Onishi K. Anticoagulation during use of a left ventricular assist device. ASAIO J. 2000;46(3):354–7.

    PubMed  CAS  Google Scholar 

  72. Takahama T et al. Ideal anticoagulation for use with a left ventricular assist device. ASAIO J. 1995;41(3):M779–82.

    PubMed  CAS  Google Scholar 

  73. Christiansen S et al. Anticoagulative management of patients requiring left ventricular assist device implantation and suffering from heparin-induced thrombocytopenia type II. Ann Thorac Surg. 2000;69(3):774–7.

    PubMed  CAS  Google Scholar 

  74. Pereira NL et al. Discontinuation of antithrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg. 2010;11(4): 503–5.

    PubMed  Google Scholar 

  75. Stern DR et al. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg. 2010;25(3):352–6.

    PubMed  Google Scholar 

  76. Rossi M et al. What is the optimal anticoagulation in patients with a left ventricular assist device? Interact Cardiovasc Thorac Surg. 2012;15(4):733–40.

    PubMed  Google Scholar 

  77. Russell SD et al. Risk of bleeding and stroke in 700 HeartMate II LVAD outpatients. J Heart Lung Transplant. 2011;30(4):S66.

    Google Scholar 

  78. Boyle AJ et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28(9):881–7.

    PubMed  Google Scholar 

  79. Dranishnikov N et al. Simultaneous aortic valve replacement in left ventricular assist device recipients: single-center experience. Int J Artif Organs. 2012;35(7):489–94.

    PubMed  Google Scholar 

  80. Feldman CM et al. Management of aortic insufficiency with continuous flow left ventricular assist devices: bioprosthetic valve replacement. J Heart Lung Transplant. 2006;25(12): 1410–2.

    PubMed  Google Scholar 

  81. Rao V et al. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71(5):1448–53.

    PubMed  CAS  Google Scholar 

  82. Pal JD et al. Low operative mortality with implantation of a continuous-flow left ventricular assist device and impact of concurrent cardiac procedures. Circulation. 2009;120(11 Suppl):S215–9.

    PubMed  Google Scholar 

  83. Nahumi DB et al. Aortic insufficiency and clinical outcomes in patients undergoing aortic valve procedures at the time of continuous flow left ventricular assist device implantation. J Heart Lung Transplant. 2013;32(4):S278.

    Google Scholar 

  84. Moazami N et al. Inflow valve regurgitation during left ventricular assist device support may interfere with reverse ventricular remodeling. Ann Thorac Surg. 1998;65(3):628–31.

    PubMed  CAS  Google Scholar 

  85. Holman WL et al. Influence of longer term left ventricular assist device support on valvular regurgitation. ASAIO J. 1994;40(3):M454–9.

    PubMed  CAS  Google Scholar 

  86. Westaby S. Tricuspid regurgitation in left ventricular assist device patients. Eur J Cardiothorac Surg. 2012;41(1):217–8.

    PubMed  Google Scholar 

  87. Piacentino 3rd V et al. Clinical impact of concomitant tricuspid valve procedures during left ventricular assist device implantation. Ann Thorac Surg. 2011;92(4):1414–8. discussion 1418–9.

    PubMed  Google Scholar 

  88. Potapov EV et al. Revascularization of the occluded right coronary artery during left ventricular assist device implantation. J Heart Lung Transplant. 2001;20(8):918–22.

    PubMed  CAS  Google Scholar 

  89. Bartoli CR et al. Percutaneous closure of a patent foramen ovale to prevent paradoxical thromboembolism in a patient with a continuous-flow LVAD. J Invasive Cardiol. 2013;25(3): 154–6.

    PubMed  Google Scholar 

  90. Loforte A et al. Transcatheter closure of patent foramen ovale for hypoxemia during left ventricular assist device support. J Card Surg. 2012;27(4):528–9.

    PubMed  Google Scholar 

  91. Kapur NK et al. Percutaneous closure of patent foramen ovale for refractory hypoxemia after HeartMate II left ventricular assist device placement. J Invasive Cardiol. 2007;19(9):E268–70.

    PubMed  Google Scholar 

  92. Sheikh FH et al. HeartMate(R) II continuous-flow left ventricular assist system. Expert Rev Med Devices. 2011;8(1):11–21.

    PubMed  Google Scholar 

  93. Meyer AL et al. Thrombus formation in a HeartMate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;135(1):203–4.

    PubMed  Google Scholar 

  94. Bhamidipati CM et al. Early thrombus in a HeartMate II left ventricular assist device: a potential cause of hemolysis and diagnostic dilemma. J Thorac Cardiovasc Surg. 2010;140(1):e7–8.

    PubMed  Google Scholar 

  95. Uriel N et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75.

    PubMed  Google Scholar 

  96. Muthiah K et al. Thrombolysis for suspected intrapump thrombosis in patients with continuous flow centrifugal left ventricular assist device. Artif Organs. 2013;37(3):313–8.

    PubMed  Google Scholar 

  97. Kiernan MS et al. Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg. 2011;142(3):712–4.

    PubMed  Google Scholar 

  98. Moazami N et al. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann Thorac Surg. 2013;95(2):500–5.

    PubMed  Google Scholar 

  99. Goldstein D et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32:667–70.

    Google Scholar 

  100. Hannan MM et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30(4):375–84.

    PubMed  Google Scholar 

  101. Acharya MN et al. Tsui, what is the optimum antibiotic prophylaxis in patients undergoing implantation of a left ventricular assist device? Interact Cardiovasc Thorac Surg. 2012;14(2):209–14.

    PubMed  Google Scholar 

  102. Califano S et al. Left ventricular assist device-associated infections. Infect Dis Clin North Am. 2012;26(1):77–87.

    PubMed  Google Scholar 

  103. Guerrero-Miranda C et al. Classification of ventricular assist device infections according to ISHLT formulation and device generation. J Heart Lung Transplant. 2012;31(4):S21.

    Google Scholar 

  104. Goldstein DJ et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31(11):1151–7.

    PubMed  Google Scholar 

  105. Park SJ et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–8.

    PubMed  Google Scholar 

  106. Islam S et al. Left ventricular assist devices and gastrointestinal bleeding: a narrative review of case reports and case series. Clin Cardiol. 2013;36(4):190–200.

    PubMed  Google Scholar 

  107. Morgan JA et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2012;31(7):715–8.

    PubMed  Google Scholar 

  108. Klovaite J et al. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7.

    PubMed  CAS  Google Scholar 

  109. Malehsa D et al. Acquired von Willebrand syndrome after exchange of the HeartMate XVE to the HeartMate II ventricular assist device. Eur J Cardiothorac Surg. 2009;35(6):1091–3.

    PubMed  Google Scholar 

  110. Crow S et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90(4):1263–9. discussion 1269.

    PubMed  Google Scholar 

  111. Hosseini MT et al. Comparison of left ventricular geometry after HeartMate II and HeartWare left ventricular assist device implantation. J Cardiothorac Surg. 2013;8:31.

    PubMed  Google Scholar 

  112. Patel SR et al. Gastrointestinal bleeding is not associated with pump speed and aortic valve opening in patients supported with the HeartMate II LVAD. J Heart Lung Transplant. 2012;31(4):S34.

    Google Scholar 

  113. Pagani FD et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21.

    PubMed  Google Scholar 

  114. Suarez J et al. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4(6):779–84.

    PubMed  Google Scholar 

  115. Hayes HM et al. Management options to treat gastrointestinal bleeding in patients supported on rotary left ventricular assist devices: a single-center experience. Artif Organs. 2010;34(9): 703–6.

    PubMed  Google Scholar 

  116. Aggarwal A et al. Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann Thorac Surg. 2012;93(5):1534–40.

    PubMed  Google Scholar 

  117. Nakajima I et al. Pre- and post-operative risk factors associated with cerebrovascular accidents in patients supported by left ventricular assist device. Single center’s experience in Japan. Circ J. 2011;75(5):1138–46.

    PubMed  Google Scholar 

  118. Slaughter MS et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    PubMed  CAS  Google Scholar 

  119. Tsukui H et al. Cerebrovascular accidents in patients with a ventricular assist device. J Thorac Cardiovasc Surg. 2007;134(1):114–23.

    PubMed  Google Scholar 

  120. Aaronson KD et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200.

    PubMed  Google Scholar 

  121. Kato TS et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2012;31(1):1–8.

    PubMed  Google Scholar 

  122. Aggarwal A et al. The development of aortic insufficiency in continuous-flow left ventricular assist device-supported patients. Ann Thorac Surg. 2013;95(2):493–8.

    PubMed  Google Scholar 

  123. Bejar NN et al. The prevalence of aortic insufficiency in patients maintained on continuous flow left ventricular assist devices. J Heart Lung Transplant. 2013;32(4):S278.

    Google Scholar 

  124. Coyle LA et al. Measurement of blood pressure during support with a continuous-flow left ventricular assist device in the outpatient setting. J Heart Lung Transplant. 2013;32(4):S235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Jay Zucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Zucker, M.J., Baydoun, H. (2014). Improving Clinical Outcomes: A Targeted Approach. In: Kyo, S. (eds) Ventricular Assist Devices in Advanced-Stage Heart Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54466-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54466-1_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54465-4

  • Online ISBN: 978-4-431-54466-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics