Skip to main content

Stem Cell Therapy to Approach Refractory Asherman’s Syndrome

  • Chapter
  • First Online:
Female and Male Fertility Preservation
  • 1295 Accesses

Abstract

The endometrium is a highly regenerative tissue that regenerates every month after each menstrual cycle. Its main function is to enable implantation of the embryo at the right moment. If implantation of the embryo does not occur, the endometrium is partially destroyed and menstruation takes place, producing a new generation of tissue (upper 2/3) in the next menstrual cycle. This endometrial renewal (‘self-renewal’) is mostly regulated by hormones during 400–500 cycles during a woman’s reproductive lifetime. Only tissues with high cellular turnover, such as epidermis, gut epithelium, and bone marrow, have this high cellular turnover. An increasing amount of evidence supports that this process is regulated by endometrium-derived stem cells (EDSCs) [1]. Histologically, the endometrium is divided in two functional layers: the basal and functional layers. The functional layer responds to progesterone and estradiol, and this layer is completely shed during menstruation. The basal layer does not respond to hormones and also does not suffer desquamation, from which it regenerates the mucosa. Recent studies [2] have described the transcriptomic signature of the endometrium at a single cell level, showing that the endometrium is composed of six major cell types including ciliated and non-ciliated epithelia, stromal cells, endothelial cells, lymphocytes, and macrophages. Interestingly, in this study, four major phases of endometrial transformation are described and provide evidence for direct interplay between stromal fibroblasts and lymphocytes during decidualization, and an abrupt transcriptomic opening of the window of implantation takes place at mid-secretory phase in unciliated epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod. 2015;92:1–22.

    Article  CAS  Google Scholar 

  2. Wang W, Vilella F, Alama P, et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med. 2020;26:1644–53.

    Article  CAS  PubMed  Google Scholar 

  3. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82.

    Article  CAS  PubMed  Google Scholar 

  4. Evans J, Salamonsen LA. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord. 2012;13:277–88.

    Article  CAS  PubMed  Google Scholar 

  5. Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet. 2012;29:1227–39.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.

    CAS  PubMed  Google Scholar 

  7. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod. 2007;22:45–51.

    Article  CAS  PubMed  Google Scholar 

  8. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    Article  CAS  PubMed  Google Scholar 

  9. Chan RWS. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.

    Article  CAS  PubMed  Google Scholar 

  10. Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril. 2004;81:403–7.

    Article  CAS  PubMed  Google Scholar 

  11. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16:818–34.

    Article  CAS  PubMed  Google Scholar 

  12. Wolff EF, Gao XB, Yao KV, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med. 2011;15:747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19:2065–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cervelló I, Gil-Sanchis C, Mas A, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5:e10964.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Masuda H, Matsuzaki Y, Hiratsu E, et al. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5:e10387.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 2008;284:143.

    Article  Google Scholar 

  17. Bratincsák A, Brownstein MJ, Cassiani-Ingoni R, et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25:2820–6.

    Article  PubMed  Google Scholar 

  18. Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium. Stem Cells Dev. 2012;21:3324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morelli SS, Rameshwar P, Goldsmith LT. Experimental evidence for bone marrow as a source of nonhematopoietic endometrial stromal and epithelial compartment cells in a murine model. Biol Reprod. 2013;89:7.

    Article  PubMed  Google Scholar 

  20. Cervelló I, Gil-Sanchis C, Mas A, et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012;7

    Google Scholar 

  21. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ikoma T, Kyo S, Maida Y, et al. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201:608.e1–8.

    Article  Google Scholar 

  23. Mints M, Jansson M, Sadeghi B, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23:139–43.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2015;292:81–5.

    Article  Google Scholar 

  25. Dmowski WP, Greenblatt RB. Asherman’s syndrome and risk of placenta accreta. Obstet Gynecol. 1969;34:288–99.

    CAS  PubMed  Google Scholar 

  26. COMP. EMA/206895/2017; Sept 2017.

    Google Scholar 

  27. Santamaria X, Isaacson K, Simón C. Asherman’s syndrome: it may not be all our fault. Hum Reprod. 2018;33:1374–80.

    Article  PubMed  Google Scholar 

  28. Yaffe H, Ron M, Polishuk WZ. Amenorrhea, hypomenorrhea, and uterine fibrosis. Am J Obstet Gynecol. 1978;130:599–601.

    Article  CAS  PubMed  Google Scholar 

  29. Conforti A, Alviggi C, Mollo A, De Placido G, Magos A. The management of Asherman syndrome: a review of literature. Reprod Biol Endocrinol. 2013;11:118.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zikopoulos KA, Kolibianakis EM, Platteau P, et al. Live delivery rates in subfertile women with Asherman’s syndrome after hysteroscopic adhesiolysis using the resectoscope or the Versapoint system. Reprod Biomed Online. 2004;8:720–5.

    Article  PubMed  Google Scholar 

  31. Xiao S, Wan Y, Xue M, et al. Etiology, treatment, and reproductive prognosis of women with moderate-to-severe intrauterine adhesions. Int J Gynaecol Obstet. 2014;125:121–4.

    Article  PubMed  Google Scholar 

  32. Pistofidis GA, Dimitropoulos K, Mastrominas M. Comparison of operative and fertility outcome between groups of women with intrauterine adhesions after adhesiolysis. J Am Assoc Gynecol Laparosc. 1996;3:S40.

    Article  CAS  PubMed  Google Scholar 

  33. Capella-Allouc S, Morsad F, Rongieres-Bertrand C, Taylor S, Fernandez H. Hysteroscopic treatment of severe Asherman’s syndrome and subsequent fertility. Hum Reprod. 1999;14:1230–3.

    Article  CAS  PubMed  Google Scholar 

  34. Deans R, Abbott J. Review of intrauterine adhesions. J Minim Invasive Gynecol. 2010;17:555–69.

    Article  PubMed  Google Scholar 

  35. Valle RF, Sciarra JJ. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome. Am J Obstet Gynecol. 1988;158:1459–70.

    Article  CAS  PubMed  Google Scholar 

  36. Hooker A, De Leeuw R, Van De Ven P, Brölmann H, Huirne J. Prevention of adhesions post abortion (papa-study); a multicentre, prospective randomised controlled trial evaluating application of auto-crosslinked hyaluronic acid gel following D&C. Gynecol Surg. 2016;13:S73.

    Google Scholar 

  37. Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9:702–12.

    Article  CAS  PubMed  Google Scholar 

  39. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95:343–53.

    Article  CAS  PubMed  Google Scholar 

  40. Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci. 2003;996:141–51.

    Article  CAS  PubMed  Google Scholar 

  41. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J Hum Reprod Sci. 2011;4:43–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Santamaria X, Cabanillas S, Cervello I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31:1087–96.

    Article  CAS  PubMed  Google Scholar 

  43. Queckbörner S, Davies LC, von Grothusen C, Santamaria X, Simón C, Gemzell-Danielsson K. Cellular therapies for the endometrium: an update. Acta Obstet Gynecol Scand. 2019;98:672–7.

    Article  PubMed  Google Scholar 

  44. Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod. 2016;31:2723–9.

    Article  PubMed  Google Scholar 

  45. Bongiovanni D, Bassetti B, Gambini E, et al. The CD133+ cell as advanced medicinal product for myocardial and limb ischemia. Stem Cells Dev. 2014;23:2403–21.

    Article  CAS  PubMed  Google Scholar 

  46. Kamei N, Kwon SM, Alev C, et al. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. J Neurol Sci. 2013;328:41–50.

    Article  CAS  PubMed  Google Scholar 

  47. Kijima Y, Ishikawa M, Sunagawa T, et al. Regeneration of peripheral nerve after transplantation of CD133+ cells derived from human peripheral blood. J Neurosurg. 2009;110:758–67.

    Article  CAS  PubMed  Google Scholar 

  48. Shi M, Ishikawa M, Kamei N, et al. Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells. 2009;27:949–60.

    Article  CAS  PubMed  Google Scholar 

  49. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cervello I, Gil-Sanchis C, Santamaria X, et al. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104:1552–3.

    Article  PubMed  Google Scholar 

  51. Murakami K, Lee YH, Lucas ES, et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology. 2014;155:4542–53.

    Article  PubMed  Google Scholar 

  52. Singh N, Mohanty S, Seth T, Shankar M, Bhaskaran S, Dharmendra S. Autologous stem cell transplantation in refractory Asherman’s syndrome: a novel cell based therapy. J Hum Reprod Sci. 2014;7:93–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Santamaria Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, X.S. (2022). Stem Cell Therapy to Approach Refractory Asherman’s Syndrome. In: Grynberg, M., Patrizio, P. (eds) Female and Male Fertility Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-47767-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47767-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47766-0

  • Online ISBN: 978-3-030-47767-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics