Skip to main content

Epicardial Adipose Tissue in the Progression and Calcification of the Coronary Artery Disease

  • Chapter
  • First Online:
Biochemistry of Cardiovascular Dysfunction in Obesity

Abstract

The relationship between obesity and coronary artery disease (CAD) may be mediated by epicardial adipose tissue (EAT). EAT volume correlates with abdominal visceral adipose tissue and as a consequence EAT is increased in patients with obesity. The presence of EAT adjacent to the coronary atherosclerotic lesions suggests a paracrine participation of this tissue in the progression and calcification of the atheroma. EAT expresses cardioprotective adipocytokines and anti-calcifying factors, such as adiponectin and osteoprotegerin among others, whose expression declines in the setting of a hypertrophy of the EAT and CAD. In contrast, pro-inflammatory and pro-calcifying molecules such as TNF-alpha, and osteopontin, as well as some microRNAs, are expressed in a higher amount in patients with CAD than in control subjects. Therefore, the quantification of the EAT emerges as a potential and useful determination for evaluating the CAD risk. However, the understanding of the complexity of the secretory pattern of EAT is still under investigation; the knowledge derived from future studies in this field will provide new potential pharmacological targets to prevent and treat the CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteve RM (2014) Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr 61:100–112

    Article  Google Scholar 

  2. van Dam AD, Boon MR, Berbée JFP et al (2017) Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol 816:82–92

    Article  PubMed  CAS  Google Scholar 

  3. Alexopoulos N, Katritsis D, Raggi P (2014) Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 233:104–112

    Article  CAS  PubMed  Google Scholar 

  4. Lin, Chun TH, Kang L (2016) Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 119:8–16

    Google Scholar 

  5. Luo T, Nocon A, Fry J et al (2016) AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes 65:2295–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48

    Article  PubMed  Google Scholar 

  7. Boon MR, van Marken Lichtenbelt WD (2016) Brown adipose tissue: a human perspective. Handb Exp Pharmacol 233:301–319

    Article  CAS  PubMed  Google Scholar 

  8. Song NJ, Chang SH, Li DY et al (2017) Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp Mol Med 49:e353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Saito M (2014) Human brown adipose tissue: regulation and anti- obesity potential. Endocr J 61:409–416

    Article  CAS  PubMed  Google Scholar 

  10. Lidel ME, Betz MJ, Enerbäck S (2014) Brown adipose tissue and its therapeutic potential. J Intern Med 276:364–377

    Article  Google Scholar 

  11. Cui XB, Chen SY (2016) White adipose tissue browning and obesity. J Biomed Res 31:1–2

    PubMed  PubMed Central  Google Scholar 

  12. Kiefer FW (2016) Browning and thermogenic programing of adipose tissue. Best Pract Res Clin Endocrinol Metab 30:479–485

    Article  CAS  PubMed  Google Scholar 

  13. Jeanson Y, Carrière A, Casteilla L (2015) A new role for browning as a redox and stress adaptive mechanism? Front Endocrinol (Lausanne) 6:158

    Google Scholar 

  14. Luna-Luna M, Medina-Urrutia A, Vargas-Alarcón G et al (2015) Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Arch Med Res 46:392–407

    Article  CAS  PubMed  Google Scholar 

  15. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto A, Kikuchi Y, Kusakabe T et al (2020) Imaging spectrum of abnormal subcutaneous and visceral fat distribution. Insights Imaging 11:24

    Google Scholar 

  17. Passaro A, Miselli MA, Sanz JM et al (2017) Gene expression regional differences in human subcutaneous adipose tissue. BMC Genomics 18:202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Iacobellis G (2009) Epicardial and pericardial fat: close, but very different. Obesity (Silver Spring) 17:625

    Google Scholar 

  19. Chhabra L, Gurukripa KN (2015) Cardiac adipose tissue: distinction between epicardial and pericardial fat remains important! Int J Cardiol 201:274–275

    Article  PubMed  Google Scholar 

  20. Chau YY, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta OT, Gupta RK (2015) Visceral adipose tissue mesothelial cells: living on the edge or just taking up space? Trends Endocrinol Metab 26:515–523

    Article  CAS  PubMed  Google Scholar 

  22. Sebo ZL, Jeffery E, Holtrup B, Rodeheffer MS (2018) A mesodermal fate map for adipose tissue. Development 145:dev166801

    Google Scholar 

  23. Jové M, Moreno-Navarrete JM, Pamplona R et al (2014) Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures. FASEB J 28:1071–1081

    Article  PubMed  CAS  Google Scholar 

  24. Fuster JJ, Ouchi N, Gokce N, Walsh K (2016) Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res 118:1786–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Rexrode KM, van Dam RM et al (2008) Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation 117:1658–1667

    Article  PubMed  Google Scholar 

  26. Pinho CPS, Diniz ADS, Arruda IKG et al (2018) Waist circumference measurement sites and their association with visceral and subcutaneous fat and cardiometabolic abnormalities. Arch Endocrinol Metab 62:416–423

    Article  PubMed  Google Scholar 

  27. Sun Q, Townsend MK, Okereke OI et al (2009) Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ 339:b3796

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rallidis LS, Baroutsi K, Zolindaki M et al (2014) Visceral adipose tissue is a better predictor of subclinical carotid atherosclerosis compared with waist circumference. Ultrasound Med Biol 40:1083–1088

    Article  PubMed  Google Scholar 

  29. Prospective Studies Collaboration, Whitlock G, Lewington S et al (2009) Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373:1083–1096

    Google Scholar 

  30. Wu FZ, Wu CC, Kuo PL, Wu MT (2016) Differential impacts of cardiac and abdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc Disord 16:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chistiakov DA, Grechko AV, Myasoedova VA et al (2017) Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology. Atherosclerosis 263:361–368

    Article  CAS  PubMed  Google Scholar 

  32. Patel VB, Shah S, Verma S, Oudit GY (2017) Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary disease. Heart Fail Rev 22:889–902

    Article  PubMed  Google Scholar 

  33. Iacobellis G (2015) Local and system effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol 11:363–371

    Article  CAS  PubMed  Google Scholar 

  34. González N, Moreno-Villegas Z, González-Bris A et al (2017) Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol 16:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gaborit B, Sengenes C, Ancel P et al (2017) Role of epicardial adipose tissue in health and disease: a matter of fat? Compr Physiol 7:1051–1082

    Article  PubMed  Google Scholar 

  36. Sacks HS, Fain JN (2011) Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol 38:879–887

    Article  CAS  PubMed  Google Scholar 

  37. Iacobellis G, Assael F, Ribaudo MC et al (2003) Epicardial fat from echocardiography a new method for visceral adipose tissue prediction. Obes Res 11:304–310

    Article  PubMed  Google Scholar 

  38. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  CAS  PubMed  Google Scholar 

  39. Bambace C, Telesca M, Zoico E et al (2011) Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc Pathol 20:e153–e156

    Article  CAS  PubMed  Google Scholar 

  40. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cherian S, Lopaschuk GD, Carvalho E (2012) Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab 303:E937–E949

    Article  CAS  PubMed  Google Scholar 

  42. Sacks HS, Fain JN, Holman B et al (2009) Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 94:3611–3615

    Article  CAS  PubMed  Google Scholar 

  43. Silaghi A, Piercecchi-Marti MD, Grino M et al (2008) Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 16:2424–2430

    Article  Google Scholar 

  44. de Feyter PJ (2011) Epicardial adipose tissue: an emerging role for the development of coronary atherosclerosis. Clin Cardiol 34:143–144

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Vos AM, Prokop M, Roos CJ et al (2008) Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 29:777–783

    Article  PubMed  Google Scholar 

  46. Ueno K, Anzai T, Jinzaki M et al (2009) Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions. Circ J 73:1927–1933

    Article  PubMed  Google Scholar 

  47. Xu Y, Cheng X, Hong K et al (2012) How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis 23:227–233

    Article  PubMed  Google Scholar 

  48. McKenney ML, Schultz KA, Boyd JH, Byrd JP et al (2014) Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  49. Iacobellis G, Barbaro G (2008) The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 40:442–445

    Article  CAS  PubMed  Google Scholar 

  50. Cheng KH, Chu CS, Lee KT et al (2008) Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes 32:268–274

    Article  CAS  Google Scholar 

  51. Hirata Y, Kurobe H, Akaike M et al (2011) Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J 52:139–142

    Article  CAS  PubMed  Google Scholar 

  52. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 292:E740–E747

    Article  CAS  PubMed  Google Scholar 

  53. Baker AR, Harte AL, Howell N et al (2009) Epicardial adipose tissue as a source of nuclear factor kappa B and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab 94:261–267

    Article  CAS  PubMed  Google Scholar 

  54. Cesari M, Pessina AC, Zanchetta M et al (2006) Low plasma adiponectin is associated with coronary artery disease but not with hypertension in high-risk nondiabetic patients. J Intern Med 260:474–483

    Article  CAS  PubMed  Google Scholar 

  55. Iacobellis G, Pistilli D, Gucciardo M et al (2005) Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with CAD. Cytokine 29:251–255

    Google Scholar 

  56. Dutour A, Achard V, Sell H et al (2010) Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and over expressed in patients with CAD. J Clin Endocrinol Metab 95:963–967

    Article  CAS  PubMed  Google Scholar 

  57. Watanabe K, Watanabe R, Konii H et al (2016) Counteractive effects of omentin-1 against atherogenesis†. Cardiovasc Res 110:118–128

    Article  CAS  PubMed  Google Scholar 

  58. Du Y, Ji Q, Cai L et al (2016) Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol 15:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Moreno-Santos I, Pérez-Belmonte LM, Macías-González M et al (2016) Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med 14:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Uldry M, Yang W, St-Pierre J et al (2006) Complementary action of the PGC1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341

    Article  CAS  PubMed  Google Scholar 

  61. Hisamatsu T, Fujiyoshi A, Miura K (2019) Coronary artery calcium: its clinical utility in primary prevention. Clin Calcium 29:215–223

    Google Scholar 

  62. Erbel R, Möhlenkamp S, Moebus S et al (2010) Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 56:1397–1406

    Article  PubMed  Google Scholar 

  63. Erbel R, Lehmann N, Churzidse S et al (2013) Gender-specific association of coronary artery calcium and lipoprotein parameters: the Heinz Nixdorf Recall Study. Atherosclerosis 229:531–540

    Article  CAS  PubMed  Google Scholar 

  64. García-Sánchez C, Posadas-Romero C, Posadas-Sánchez R et al (2015) Low concentrations of phospholipids and plasma HDL cholesterol subclasses in asymptomatic subjects with high coronary calcium scores. Atherosclerosis 238:250–255

    Article  PubMed  CAS  Google Scholar 

  65. Iwasaki K, Matsumoto T, Aono H et al (2011) Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  66. Djaberi R, Schuijf JD, van Werkhoven JM et al (2008) Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol 102:1602–1607

    Article  PubMed  Google Scholar 

  67. Kim BJ, Kang JG, Lee SH et al (2017) Relationship of echocardiographic epicardial fat thickness and epicardial fat volume by computed tomography with coronary artery calcification: data from the CAESAR Study. Arch Med Res. 48:352–359

    Article  PubMed  Google Scholar 

  68. Iwasaki K, Urabe N, Kitagawa A, Nagao T (2018) The association of epicardial fat volume with coronary characteristics and clinical outcome. Int J Cardiovasc Imaging 34:301–309

    Article  PubMed  Google Scholar 

  69. Yerramasu A, Dey D, Venuraju S et al (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220:223–230

    Article  CAS  PubMed  Google Scholar 

  70. Isoda K, Nishikawa K, Kamezawa Y et al (2002) Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ Res 91:77–782

    Article  CAS  PubMed  Google Scholar 

  71. Hirota S, Imakita M, Kohri K et al (1993) Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol 143:1003–1008

    Google Scholar 

  72. Chiba S, Okamoto H, Kon S et al (2002) Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 16:111–117

    Article  PubMed  Google Scholar 

  73. Matsui Y, Rittling SR, Okamoto H et al (2003) Osteopontin deficiency attenuates atherosclerosis in female apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23:1029–1034

    Article  CAS  PubMed  Google Scholar 

  74. Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203

    Article  CAS  PubMed  Google Scholar 

  75. Jiménez- Corona AE, Pérez-Torres A, Mas-Oliva J, Moreno A (2008) Effect of osteopontin, chondroitin sulfates (B, C), and human serum albumin in the crystalization behavior of hydroxiapatite in agarose and silica hydrogels. Cryst Growth Des 8:1335–1339

    Article  CAS  Google Scholar 

  76. Wolak T (2014) Osteopontin—a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 236:327–337

    Article  CAS  PubMed  Google Scholar 

  77. Liaw L, Lindner V, Schwartz SM et al (1995) Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp-dependent endothelial migration in vitro. Circ Res 77:665–672

    Article  CAS  PubMed  Google Scholar 

  78. Miyazaki Y, Setoguchi M, Yoshida S et al (1990) The mouse osteopontin gene. Expression in monocytic lineages and complete nucleotide sequence. J Biol Chem 265:14432–14438

    Google Scholar 

  79. Giachelli CM, Bae N, Almeida M et al (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O’Brien ER, Garvin MR, Stewart DK et al (1994) Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb 14:1648–1656

    Article  CAS  PubMed  Google Scholar 

  81. Luna-Luna M, Cruz-Robles D, Ávila-Vanzzini N et al (2017) Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses. Lipids Health Dis 16:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zeyda M, Gollinger K, Todoric J et al (2011) Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 152:2219–2227

    Article  CAS  PubMed  Google Scholar 

  83. Deuell KA, Callegari A, Giachelli CM et al (2012) RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-alpha. J Vasc Res 49:510–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tintut Y, Patel J, Parhami F, Demer LL (2000) Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:2636–2642

    Article  CAS  PubMed  Google Scholar 

  85. Csiszar A, Smith KE, Koller A et al (2005) Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-kappaB activation by tumor necrosis factor-alpha, H2O2, and high intravascular pressure. Circulation 111:2364–2372

    Article  CAS  PubMed  Google Scholar 

  86. Lee HL, Woo KM, Ryoo HM, Baek JH (2010) Tumor necrosis factor-alpha increases alkaline phosphatase expression in vascular smooth muscle cells via MSX2 induction. Biochem Biophys Res Commun 391:1087–1092

    Article  CAS  PubMed  Google Scholar 

  87. Csiszar A, Ahmad M, Smith KE et al (2006) Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. Am J Pathol 168:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaden JJ, Kiliç R, Sarikoç A et al (2005) Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med 16:869–872

    CAS  PubMed  Google Scholar 

  89. Proudfoot D, Skepper JN, Hegyi L et al (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87:1055–1062

    Article  CAS  PubMed  Google Scholar 

  90. Proudfoot D, Skepper JN, Hegyi L et al (2001) The role of apoptosis in the initiation of vascular calcification. Z Kardiol 90(Suppl 3):43–46

    PubMed  Google Scholar 

  91. Emery JG, McDonnell P, Burke MB et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367

    Article  CAS  PubMed  Google Scholar 

  92. Gochuico BR, Zhang J, Ma BY et al (2000) TRAIL expression in vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 278:L1045–L1050

    Article  CAS  PubMed  Google Scholar 

  93. Sato K, Niessner A, Kopecky SL et al (2006) TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med 203:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bennett BJ, Scatena M, Kirk EA et al (2006) Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler Thromb Vasc Biol 26:2117–2124

    Article  CAS  PubMed  Google Scholar 

  95. Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D et al (2008) Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(-/-) mice. Circulation 117(3):411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Min H, Morony S, Sarosi I et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schoppet M, Preissner KT, Hofbauer LC (2002) RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 22:549–553

    Article  CAS  PubMed  Google Scholar 

  98. Kaden JJ, Bickelhaupt S, Grobholz R et al (2004) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol 36:57–66

    Article  CAS  PubMed  Google Scholar 

  99. Kanegae Y, Tavares AT, Izpisúa Belmonte JC, Verma IM (1998) Role of Rel/NF-kappaB transcription factors during the outgrowth of the vertebrate limb. Nature 392:611–614

    Article  CAS  PubMed  Google Scholar 

  100. Sun M, Chang Q, Xin M et al (2017) Endegenous bone morphogenetic protein 2 plays a role in vascular smooth musccle cell calcification induced by interleukin 6 in vitro. Int J Immunopathol Pharmacol 30:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hruska KA, Mathew S, Saab G (2005) Bone morphogenetic proteins in vascular calcification. Circ Res 97:105–114

    Article  CAS  PubMed  Google Scholar 

  102. Shimizu T, Tanaka T, Iso T et al (2011) Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem 286:19138–19148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng SL, Shao JS, Charlton-Kachigian N et al (2003) MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278:45969–45977

    Article  CAS  PubMed  Google Scholar 

  104. Shao JS, Cai J, Towler DA (2006) Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 26:1423–1430

    Article  CAS  PubMed  Google Scholar 

  105. Derwall M, Malhotra R, Lai CS et al (2012) Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32:613–622

    Article  CAS  PubMed  Google Scholar 

  106. Nakagawa Y, Ikeda K, Akakabe Y et al (2010) Paracrine osteogenic signals via bone morphogenetic protein-2 accelerate the atherosclerotic intimal calcification in vivo. Arterioscler Thromb Vasc Biol 30:1908–1915

    Article  CAS  PubMed  Google Scholar 

  107. Li X, Yang HY, Giachelli CM (2008) BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chiyoya M, Seya K, Yu Z et al (2018) Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves. J Pharmacol Sci 136:257–265

    Article  CAS  PubMed  Google Scholar 

  109. Yao Y, Bennett BJ, Wang X et al (2010) Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 107:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Feng J, Gao J, Li Y et al (2014) BMP4 enhances foam cell formation by BMPR-2/Smad1/5/8 signaling. Int J Mol Sci 15:5536–5552

    Google Scholar 

  111. Dhore CR, Cleutjens JP, Lutgens E et al (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    Article  CAS  PubMed  Google Scholar 

  112. Panizo S, Cardus A, Encinas M et al (2009) RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res 104:1041–1048

    Article  CAS  PubMed  Google Scholar 

  113. Mikhaylova L, Malmquist J, Nurminskaya M (2007) Regulation of in vitro vascular calcification by BMP4, VEGF and Wnt3a. Calcif Tissue Int 81:372–381

    Article  CAS  PubMed  Google Scholar 

  114. Hayashi K, Nakamura S, Nishida W, Sobue K (2006) Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 26:9456–9470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang W, Li C, Pang L et al (2014) Mesenchymal stem cells recruited by active TGFβ contribute to osteogenic vascular calcification. Stem Cells Dev 23:1392–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wan M, Li C, Zhen G et al (2012) Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 30:2498–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jamaluddin MS, Weakley SM, Zhang L et al (2011) miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 11:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xia ZY, Hu Y, Xie PL et al (2015) Runx2/miR-3960/miR-2861 positive feedback loop is responsible for osteogenic transdifferentiation of vascular smooth muscle cells. Biomed Res Int 2015:624037

    PubMed  PubMed Central  Google Scholar 

  119. Sudo R, Sato F, Azechi T, Wachi H (2015) MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells 20:1077–1087

    Article  CAS  PubMed  Google Scholar 

  120. Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V et al (2012) Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS ONE 7:e47807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiang W, Zhang Z, Yang H et al (2017) The involvement of miR-29b-3p in arterial calcification by targeting matrix metalloproteinase-2. Biomed Res Int 2017:6713606

    PubMed  PubMed Central  Google Scholar 

  122. Qiao W, Chen L, Zhang M (2014) MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells. Cell Physiol Biochem 33:1945–1953

    Article  CAS  PubMed  Google Scholar 

  123. Zheng S, Zhang S, Song Y et al (2016) MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23. Iran J Basic Med Sci 19:1331–1336

    PubMed  PubMed Central  Google Scholar 

  124. Liao XB, Zhang ZY, Yuan K et al (2013) MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology 154:3344–3352

    Article  CAS  PubMed  Google Scholar 

  125. Goettsch C, Rauner M, Pacyna N et al (2011) miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179:1594–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mackenzie NC, Staines KA, Zhu D et al (2014) miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct 32:209–216

    Article  CAS  PubMed  Google Scholar 

  127. Wu T, Zhou H, Hong Y et al (2012) miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287:7503–7511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Balderman JA, Lee HY, Mahoney CE et al (2012) Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1:e003905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Cui RR, Li SJ, Liu LJ et al (2012) MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res 96:320–329

    Article  CAS  PubMed  Google Scholar 

  130. Thomou T, Mori MA, Dreyfuss JM et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455

    Google Scholar 

Download references

Acknowledgements

This manuscript was supported by a CONACYT grant No. 233493. María de Jesús Luna-Luna is a doctoral student from “Programa de Doctorado en Ciencias Biomédicas de la Universidad Nacional Autónoma de México” and received fellowships from CONACYT, No. 408097 and EXP-AYTE-17345. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar Pérez-Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luna-Luna, M., Zentella-Dehesa, A., Pérez-Méndez, Ó. (2020). Epicardial Adipose Tissue in the Progression and Calcification of the Coronary Artery Disease. In: Tappia, P.S., Bhullar, S.K., Dhalla, N.S. (eds) Biochemistry of Cardiovascular Dysfunction in Obesity. Advances in Biochemistry in Health and Disease, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-47336-5_11

Download citation

Publish with us

Policies and ethics