Skip to main content

Genomics-Assisted Breeding Green Gram (Vigna radiata (L.) Wilczek) for Accelerating Genetic Gain

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Green gram popularly known as mungbean is the third most important grain crop in the world. Being a short-duration legume, it is an ideal legume for intercropping, catch cropping, and relay cropping. It is one of the good sources of dietary protein to a large number of people who depend on vegetarian diet. It has good ability to thrive in harsh production environments and nutrient-poor soils besides being a good source of human nutrition. However, its productivity is far below that of its potential attributable to biotic production constraints (among others). While conventional phenotype selection-based breeding has resulted in perceptible genetic gains, further increase in the same requires broadening the genetic base of cultivars and the use of genomic tools such as DNA markers, genetic engineering, and genome editing. In this chapter an attempt has been made to review the status of genetic resources, progress achieved through conventional breeding, and prospects of new science tools such as DNA markers, genetic engineering, and genome editing in augmenting the precision and pace of breeding green gram for improved productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 January 2021

    This book was inadvertently published with incorrect spelling of the chapter author “P. Gazala”. The chapter author name has now been corrected from “P. Gazal” to “P. Gazala”.

References

  • Abdullah A, Baldwin RE (1984) Mineral and vitamin contents of seeds and sprouts of newly available small-seeded soybeans and market samples of mungbeans. J Food Sci 49:656–657

    CAS  Google Scholar 

  • Adsule RN (1996) Moth bean (Vigna aconitifolia (Jacq.) Marechal). In: Nwokolo E, Smartt J (eds) Food and feed from legumes and oilseeds. Springer, New York, pp 203–205. https://doi.org/10.1007/978-1-4613-0433-3_21

    Chapter  Google Scholar 

  • Agboola AA, Fayemi AAA (1972) Fixation and excretion of nitrogen by tropical legumes. Agron J 64:409–412. https://doi.org/10.2134/agronj1972.00021962006400040001x

    Article  CAS  Google Scholar 

  • Allito BB, Nana EM, Alemneh AA (2015) Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol 20:1–6

    Google Scholar 

  • Ankesh Kumar, Adarsha HS, Shanthala J, Savithramma DL (2017) Differential response of F4 and F5 green gram [Vigna radiata (L.) wilczek] recombinant inbred lines (RILs) to powdery mildew infection. J Pharmacogn Phytochem 6(5):1147–1153

    Google Scholar 

  • Annual Report: 2017–2018: AICRP on MULLaRP, ICAR, Indian Institute of Pulses Research, Kanpur, India

    Google Scholar 

  • Ashraf MU, Sirinivas PE, Sadiq MS, Saleem M (2001) AVRDC germplasm, its utilization and development of improved mungbean. Pak J Bot 33:443–452

    Google Scholar 

  • Avinash CS, Patil BL (2018) Trends in area, production and productivity of major pulses in Karnataka and India: an economic analysis. J Pharmacogn Phytochem 7(4):2097–2102

    Google Scholar 

  • AVRDC (1987) 1984 progress report. Asian Vegetable Research and Development Center, Shanhua, Tainan, p 480

    Google Scholar 

  • Babu CR, Sharma SK, Chaterjee SR, Abrol YP (1988) Seed protein and amino acid compositions of wild Vigna radiata var. sublobata (Fabaceae) & two cultigens V. mungo and V. radiata. Econ Bot 42:54–61

    CAS  Google Scholar 

  • Barkoti L, Bains K (2007) Effect of household processing on the in-vitro bioavailability of iron in mung bean (Vigna radiata). Food Nutr Bull 28:18–22

    Google Scholar 

  • Birch ANE, Fellows LE, Evans SV, Doharty K (1986) Para-aminophenyldanine in Vigna: possible taxonomic and ecological significance as a seed defence against bruchids. Phytochemistry 25:2745–2749

    CAS  Google Scholar 

  • Bose RD (1939) Studies in Indian pulses. IX. Contributions to the genetics of mung (Phaseolus radiatus Linn. Syn. Ph. aureus Roxb.). Indian J Agric Sci 9:575–594

    Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. John Wiley & Sons, New York, pp 11–86

    Google Scholar 

  • Brown AHD (1989) Core collections – a practical approach to genetic-resources management. Genome 31:818–824. https://doi.org/10.1139/g89-144

    Article  Google Scholar 

  • Chaitieng B, Kaga A, Han OK, Wang X, Wong Kaew S, Laosuwan P, Tomook N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525

    CAS  Google Scholar 

  • Chandra N, Tickoo JL (1998) Genetic analysis of protein content in mungbean (Vigna radiata L. Wilczek). Indian J Genet 58:475–478

    Google Scholar 

  • Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina Subsp. oblonga, a halophytic species. Theor Appl Genet 127:691–702. https://doi.org/10.1007/s00122-013-2251-1

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu X (2001) Inheritance of seed color and lustre in mungbean (Vigna radiata). Agric Sci Technol Hunan 2:8–12

    Google Scholar 

  • Chen H, Wang L, Wang S, Liu C, Blair MW, Cheng X (2015a) Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS One 10(4):e0120273

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Qiao L, Wang L, Wang L, Blair MW, Cheng X (2015b) Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene 566:175–183

    CAS  PubMed  Google Scholar 

  • Chitra U, Vimala V, Singh U, Geervani P (1995) Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum Nutr 47:163–172. https://doi.org/10.1007/BF01089266

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    CAS  Google Scholar 

  • Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015) Mung bean: technological and nutritional potential. Crit Rev Food Sci Nutr 55:670–688

    CAS  PubMed  Google Scholar 

  • Dasgupta T, Banik A, Das S (1998) Combining ability in mungbean. Ind J Pulses Res 11:28–32

    Google Scholar 

  • De Candolle A (1886) Origin of cultivated plants. Kejen Paul Trench and Co., London

    Google Scholar 

  • Doyle JJ (1988) 5S ribosomal gene variation in the soybean and its progenitor. Theor Appl Genet 75:621–624. https://doi.org/10.1007/BF00289130

    Article  CAS  Google Scholar 

  • Durga KK, Kumar SS (1997) Screening for preharvest sprouting in pulses. Legume Res 20:193–197

    Google Scholar 

  • Dwiwedi S, Singh DP (1990) Inheritance of fascination in mungbean (Vigna radiata L. Welczek). Indian J Genet 50:80–82

    Google Scholar 

  • Ebert AW (2013) Ex situ conservation of plant genetic resources of major vegetables. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer Press, New York, pp 373–417

    Google Scholar 

  • Egawa Y, Takeda H, Suzuki K (1999) Research plan on crop heat tolerance at the crop introduction and cultivation laboratory. Jpn Int Res Center Agric Sci Working Rep 14:103–107

    Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata (L.) Walp.). Field Crop Res 53:187–204. https://doi.org/10.1016/S0378-4290(97)00031-2

    Article  Google Scholar 

  • Estivill X, Armengol L (2007) Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet 3(10):e190. https://doi.org/10.1371/journal.pgen.0030190

    Article  CAS  PubMed Central  Google Scholar 

  • Fatima S, Kapoor R (2006) In vitro and in vivo glycemic effects of certain legumes. J Food Sci Technol 43:263–266

    Google Scholar 

  • Fatokun CA, Menancio-Hautea D, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mungbean based on RFLP mapping. Genetics 132:841–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatokun CA, Danesh D, Young ND (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86(1):97–104

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112

    PubMed  Google Scholar 

  • Fujii K, Miyazaki S (1987) Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification. Appl Entomol Zool 22:319–322

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100(5):903–924

    PubMed  PubMed Central  Google Scholar 

  • Fuller DQ, Harvey EL (2006) The archaeo botany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:241–268. https://doi.org/10.1179/174963106x123232

    Article  Google Scholar 

  • Ganesan K, Xu B (2018) A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci Human Wellness 7:11–33. https://doi.org/10.1016/j.fshw.2017.11.002

    Article  Google Scholar 

  • Garg DD, Arya RS, Sharma T, Dhuria RK (2004) Effect of replacement of sewan straw (Lasirus sindicus) by moong (Phaseolus aureus) chara on rumen and haemato-biochemical parameters in sheep. Vet Pract 5:70–73

    Google Scholar 

  • Guo X, Li T, Tang K, Liu RH (2012) Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J Agric Food Chem 60:11050–11055

    CAS  PubMed  Google Scholar 

  • Gupta S, Gupta DS, Tuba Anjum K, Pratap A, Kumar J (2013) Transferability of simple sequence repeat markers in blackgram (Vigna mungo L. Hepper). Aust J Crop Sci 7:345–353

    CAS  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621. https://doi.org/10.1007/BF00021686

    Article  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Tabaand S (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943. https://doi.org/10.1073/pnas.96.11.5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong MG, Kim KH, Ku JH, Jeong JK, Seo MJ, Park CH (2015) Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotechnol 3:39–46. https://doi.org/10.9787/PBB.2015.3.1.039, https://www.ikisan.com/tg-greengram-varieties.html

    Article  Google Scholar 

  • Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2002) Development of a mungbean [Vigna radiata L. Wilczek] RFLP linkage map and its comparison with lablab, Lablab purpureus reveal a high level of colinearity between the two genomes. Theor Appl Genet 105:160–166

    CAS  PubMed  Google Scholar 

  • Humphry ME, Lambrides CJ, Chapman SC, Aitken EAB, Imrie BC et al (2005) Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breed 124:292–298. https://doi.org/10.1111/j.1439-0523.2005.01084

    Article  CAS  Google Scholar 

  • Imtiaz H, BurhanUddin M, Gulzar MA (2011) Evaluation of weaning foods formulated from germinated wheat & mungbean from Bangladesh. Afr J Food Sci 5:897–903

    CAS  Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7:e41304. https://doi.org/10.1371/journal.pone.0041304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain HK, Mehra KL (1978) Evaluation, adaption, relationship and use of the species of Vigna cultivated in Asia. Paper presented in the Int. Legume Conference, Roy. Bot

    Google Scholar 

  • Joshi M, Timilsena Y, Adhikari B (2017) Global production, processing and utilization of lentil: a review. J Integr Agric 16(12):2898–2913

    Google Scholar 

  • Kadwe RS, Thakare KK, Badhe NN (1974) A note on the protein content and mineral composition of twenty five varieties of pulses. Indian J Nutr Diet 11:83–85

    CAS  Google Scholar 

  • Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X (2017) Novel alleles of two tightly linked genes encoding polygalacturonase- inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front Plant Sci 8:1692. https://doi.org/10.3389/fpls.2017.01692

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaga A, Ishimoto M (1998) Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Gen Genet 258:378–384. https://doi.org/10.1007/s004380050744

    Article  CAS  PubMed  Google Scholar 

  • Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036. https://doi.org/10.1534/genetics.107.078451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5(5443):1–9. https://doi.org/10.1038/ncomms6443

    Article  CAS  Google Scholar 

  • Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5:8069. https://doi.org/10.1038/srep08069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata L. Wilczek). J Crop Sci Biotechnol 13(3):155–161

    Google Scholar 

  • Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2003) Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean, (Vigna umbellata (Thunb.) Ohwi and Ohashi). J Econ Entomol 96:207–213. https://doi.org/10.1093/jee/96.1.207

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Kishore L (2012) Antioxidant activity of methanolic extract of Phaseolus trilobus root powder. Int J Pharm Pharm Sci 4:1–5

    Google Scholar 

  • Kaur S, Bains TS, Singh P (2017) Creating variability through interspecific hybridization and its utilization for genetic improvement in mungbean [Vigna radiata (L.) Wilczek]. J Appl Nat Sci 9:1101–1106. https://doi.org/10.31018/jans.v9i2.1329

    Google Scholar 

  • Khadka K, Acharya BD (2009) Cultivation practices of ricebean. Pokhara, Nepal

    Google Scholar 

  • Khatoon N, Prakash J (2004) Nutritional quality of microwave cooked and pressure cooked legumes. Int J Food Sci Nutr 55:441–448

    CAS  PubMed  Google Scholar 

  • Khattak GSS, Haq MA, Rana SA, Srinives P, Ashraf M (1999) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). Thai J Agric Sci 32:49–54

    Google Scholar 

  • Khattak GSS, Maq MA, Ashraf M, Tahir GR (2001) Genetics basis of synchrony in pod in Mungbean [Vigna radiata (L.) Welczek]. Kasetsart J Natl Sci 35:1–7

    Google Scholar 

  • Khattak GSS, Maq MA, Ashraf M, Tahir GR (2002) Triple test cross for some morphological traits in mungbean [Vigna radiata (L.) Welczek]. Euthopia 126:413–420

    Google Scholar 

  • Kim SK, Nair RM, Lee J, Lee SH (2015) Genomic resources in mung bean for future breeding programs. Front Plant Sci 6:626. https://doi.org/10.3389/fpls.2015.00626

    Article  PubMed  PubMed Central  Google Scholar 

  • Konarev A, Tomooka N, Vaughan DA (2002) Proteinase inhibitor polymorphism in the genus Vigna subgenus Ceratropis and its biosystematics implications. Euphytica 123:165–177

    CAS  Google Scholar 

  • Koona P, Osisanya EO, Jackai LEN, Tamo M, Kham RH (2002) Resistance in accessions of cowpea to the coreid pod bug Clavigralla tomentosicollis (Hemiptera: coreidae). J Econ Entomol 95:1281–1288

    CAS  PubMed  Google Scholar 

  • Kumar S, Ali M (2006) GE interaction and its breeding implications in pulses. Botanica 56:31–36

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313. https://doi.org/10.1111/j.1439-0523.2011.01851.x

    Article  CAS  Google Scholar 

  • Kylen AM, McCready RM (1975) Nutrients in seeds and sprouts of alfalfa, lentils mung bean and soybean. J Food Sci 40:1008–1009

    CAS  Google Scholar 

  • Lambrides CJ (1996) Breeding for improved seed quality traits in mungbean (Vigna radiata L. Wilczek) using DNA markers Abstracts Thesis (Ph.D.) University of Queensland

    Google Scholar 

  • Lambrides CJ, Godwin I (2007) Mungbean. In: Kole C (ed) Genome mapping and molecular breeding in plants pulses, sugar and tuber crops, vol 3. Springer, Berlin, pp 69–90

    Google Scholar 

  • Lambrides CJ, Imrie BC (2000) Susceptibility of mungbean varieties to the bruchid species Callsobruchus maculates (F.), C. Phaseoli (Gyll.), C. Chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera: chrysomelidae). Aust. J. Agric. Res. 51: 85–89. https://doi.org/10.1071/AR99051

  • Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004) Segregation distortion for seed test color in mungbean (Vigna radiata L. Wilczek). J Hered 95:532–535. https://doi.org/10.1093/jhered/esh078

    Article  CAS  PubMed  Google Scholar 

  • Lawn RJ (1995) The Asiatic Vigna species. Chapter 65. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow. ISBN 0-582-08643-4, pp 321–326

    Google Scholar 

  • Lawn RJ, Cottrell A (1988) Wild mungbean and its relatives in Australia. Biologist 35:267–273

    Google Scholar 

  • Lekha P, Gill RK, Kaur S, Bains TS (2018) Generation of interspecific hybrids for introgression of mungbean yellow mosaic virus resistance in Vigna radiate (L.) Wilczek. Legume Res 41:526–531, Article ID: LR-3808

    Google Scholar 

  • Leng PF, Lübberstedt T, Xu ML (2017) Genomics-assisted breeding: a revolutionary strategy for crop improvement. J Integr Agric 16(12):2674–2685

    Google Scholar 

  • Liu C, Fan B, Cao Z, Su Q, Wang YAN, Zhang Z, Wu J, Tian J (2016) A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet 95(3):527–535

    CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q (2017) Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet 130:2375–2393. https://doi.org/10.1007/s00122-017-2965-6

    Article  CAS  PubMed  Google Scholar 

  • Mahbubul Alam AKM, Somta P, Muktadir MA, Srinives P (2014) Quantitative trait loci associated with seed weight in mungbean (Vigna radiata (L.) Wilczek). Kasetsart J Natl Sci 48:197–204

    Google Scholar 

  • Mallillin AC, Trinidad TP, Raterta R, Dagbay K, Loyola AS (2008) Dietary fiber and fermentability characterstics of root crops and legumes. Br J Nutr 100:485–488

    CAS  PubMed  Google Scholar 

  • Masari A, Kaewwongwal A, Somta P, Srinives P (2017) Inheritance and a major quantitative trait locus of seed starch content in mungbean (Vigna radiate (L.) Wilczek). Euphytica 213:166. https://doi.org/10.1007/s00122-017-2965-6

    Article  CAS  Google Scholar 

  • Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (Vigna unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810

    CAS  PubMed  Google Scholar 

  • Misra RC, Sahu RC, Tripathy D, Naik SS (1970) Response of green gram varieties to Mital, different seasons in Orissa. In: Proceedings of the 4th Workshop on Pulse Crops, Ludhiana, p 36–42

    Google Scholar 

  • Miyagi M, Humpry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial chromosome libraries and their application in developing PCR based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156

    CAS  PubMed  Google Scholar 

  • Mogotsi KK (2006) Vigna radiata (L.) R. Wilczek. In: Brink M, Belay G (eds) PROTA 1: Cereals and pulses/Céréales et légumes secs. [CD-Rom]. PROTA, Wageningen

    Google Scholar 

  • Mubarak AE (2005) Nutritional composition and antinutritional factors of mungbean seed (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89:489–495

    CAS  Google Scholar 

  • Mukherjee A, Pradhan K (2002) Genetics of location in trifoliate leaf of mungbean. Abstracted in perspect Cytol Genet 11:88

    Google Scholar 

  • Murty BK, Patel GJ (1973) Inheritance of some morphological characters in mungbean. Bansilal Amritalal Coll Agric Mag 25:1–9

    Google Scholar 

  • Nair RM, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert A (2012) Genetic improvement of mungbean. SABRAO J Breed Genet 44:177–190

    Google Scholar 

  • Nair RM, Götz M, Winter S, Giri RR, Boddepalli VN, Sirari A (2017) Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. Eur J Plant Pathol 149:349–365. https://doi.org/10.1007/s10658-017-1187-8

    Article  CAS  Google Scholar 

  • Nobel TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG (2018) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2102. https://doi.org/10.3389/fpls.2017.02102

    Article  Google Scholar 

  • Odong TL, Jansen J, Eeuwijk VFA, Hintum VTJL (2013) Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet 126:289–305

    CAS  PubMed  Google Scholar 

  • Pathak GN, Singh B (1963) Inheritance studies in greengram. Indian J Genet 23:215–218

    Google Scholar 

  • Poehlman JM (1991) The mung bean. Oxford and IBH Publishing Co., New Delhi, 375 pp

    Google Scholar 

  • Pooja B, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol 43:58–69. https://doi.org/10.3906/biy-1801-64

    Article  CAS  Google Scholar 

  • Poolsawat O, Kativat C, Arsakit K, Tantasawat PA (2017) Identification of quantitative trait loci associated with powdery mildew resistance in mungbean using ISSR and ISSR-RGA markers. Mol Breed 37:150. https://doi.org/10.1007/s11032-017-0753-2

    Article  CAS  Google Scholar 

  • Prabhavat S (1990) Mung bean utilization in Thailand. In: Proceedings of the second international symposium, Taipei, Taiwan, p 9–15

    Google Scholar 

  • Pratap A, Joseph JK, Basu PS (2012) Identification of photo-thermo insensitive wild accessions of Vigna. Pulse Newsl 23:3

    Google Scholar 

  • Pratap A, Basu PS, Gupta S, Malviya N, Rajan N, Tomar R, Madhavan L, Nadarajan N, Singh NP (2014) Identification and characterization of sources for photo- and thermo-insensitivity in Vigna species. Plant Breed 133:756–764

    Google Scholar 

  • Pratap A, Gupta S, Tomar R, Malviya N, Maurya R, Pandey V, Suhelmehandia, Singh P (2016) Cross-genera amplification of informative microsatellite markers from common bean and scarlet runner bean for assessment of genetic diversity in mungbean (Vigna radiata). Plant Breed 135:499–505. https://doi.org/10.1111/pbr.12376

    Article  CAS  Google Scholar 

  • Qazi J, Ilyas M, Mansoor S, Briddon RW (2007) Legume yellow mosaic viruses: genetically isolated begomoviruses. Mol Plant Pathol 8:343–348. https://doi.org/10.1111/j.1364-3703.2007.00402.x

    Article  PubMed  Google Scholar 

  • Reddy KR, Singh DP (1990) The variation and transgressive segregation in the wide and varietal crosses of mungbean. Madras Agric J 77:12–14

    Google Scholar 

  • Sampath S, Rao MT, Reddy KK, Arun K, Reddy PVM (2008) Effect of germination on oligosaccharides in cereals and pulses. J Food Sci Technol 45:196–198

    CAS  Google Scholar 

  • Sandhu KS, Lim ST (2008) Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr Polym 71:245–252

    CAS  Google Scholar 

  • Sathe SK (1996) The nutritional value of selected Asiatic pulses- chickpea, black gram mung bean and pigeon pea. In: Nwokolo E, Smart J (eds) Legumes and oilseeds in nutrition. Chapman and Hall, London, pp 12–32

    Google Scholar 

  • Schafleitner R, Nair RM, Rathore A, Wang Y, Lin C, Chu S, Lin P, Chang JC, Ebert A (2015) The AVRDC – The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genomics 16:344

    PubMed  PubMed Central  Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16:159. https://doi.org/10.1186/s12870-016-0847-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen NK, Ghosh AK (1959) Genetic studies in green gram. Indian J Genet 19:210–227

    Google Scholar 

  • Shanmugasundaram S, Keatinge JDH, Hughes JD (2009) Counting on beans: mungbean improvement in Asia. In: Spielman DJ, Pandya-Lorch R (eds) Millions fed: proven successes in agricultural development. International Food Policy Research Institute, Washington, DC, pp 103–108

    Google Scholar 

  • Sharma AR, Jat ML, Saharawat YS, Singh VP, Singh R (2012) Conservation agriculture for improving productivity and resource-use efficiency: prospects and research needs in Indian context. Indian J Agron 57(IAC Special Issue):131–140

    Google Scholar 

  • Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Pasture Sci 63:501–512

    Google Scholar 

  • Singh BV, Ahuja MR (1977) Phaseolus sublobatus Roxb. A source of resistance to yellow mosaic virus for cultivated mung. Indian J Genet Plant Breed 37:130–132

    Google Scholar 

  • Singh D, Mehta TR (1953) Inheritance of lobed leaf margin in mung (Phaseolus aureus L.). Curr Sci 22:348

    Google Scholar 

  • Singh TP, Singh KB (1970) Inheritance of clusters per node in mungbean (Phaseolus aureus Roxb.). Curr Sci 39:265

    Google Scholar 

  • Singh TP, Singh KB (1972) Combining ability in mungbean. Indian J Genet 32:67–72

    Google Scholar 

  • Singh BB, Singh DP (1995) Inheritance of a small leaf mutant in mungbean. Indian J Genet 55:69–70

    Google Scholar 

  • Singh V, Singh NY (2017) Role of genomic tools for mungbean [Vigna radiate (L.) Wilczek] improvement. Legume Res 40:601–608

    Google Scholar 

  • Singh HB, Joshi BS, Chandel KPS, Pant KC, Saxena RK (1974) Genetic diversity in some Asian Phaseolus species and its conservation. Proceedings 2nd SABRAO congress. Indian J Genet 34:52–57

    Google Scholar 

  • Singh BB, Singh SR, Adjadi O (1985) Bruchid resistance in cowpea. Crop Sci 25:736–739

    Google Scholar 

  • Singh DP, Singh BB, Aditya Pratap (2016) Genetic improvement of mungbean and urdbean and their role in enhancing pulse production in India. Indian J Genet 76(4):550–567. https://doi.org/10.5958/0975-6906.2016.00072.9

    Article  Google Scholar 

  • Singh V, Yadav RK, Yadav NR, Yadav R, Malik RS, Singh J (2017a) Identification of genomic regions/genes for high iron and zinc content and cross transferability of SSR markers in mungbean (Vigna radiata L.). Legume Res 40:1004–1011. https://doi.org/10.18805/lr.v40i04.9006

    Article  Google Scholar 

  • Singh N, Mallick J, Sagolsem D, Mandal N, Bhattacharyya S (2017b) Mapping of molecular markers linked with MYMIV and yield attributing traits in mungbean. Indian J Genet Plant Breed 78:118–126. https://doi.org/10.5958/0975-6906.2018.00014.7

    Article  Google Scholar 

  • Singh N, Mallick J, Sagolsem D, Mandal M, Bhattacharyya S (2018) Mapping of molecular markers linked with MYMIV and yield attributing traits in mungbean. Indian J Genet 78(1):118–126. https://doi.org/10.5958/0975-6906.2018.00014.7

    Article  Google Scholar 

  • Somta P, Ammaranan C, Peter ACO, Srinivas P (2007) Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata L. Wilczek). Euphytica 155:47–55. https://doi.org/10.1007/s10681-006-9299-9

    Article  Google Scholar 

  • Somta C, Somta P, Tomooka N, Ooi PAC, Vaughan DA, Srinives P (2008) Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321. https://doi.org/10.1016/j.jspr.2008.04.002

    Article  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:20

    Google Scholar 

  • Swaminathan R, Singh K, Nepalia V (2012) In: Aflakpui G (ed) Insect pests of green gram Vigna radiata (L.) Wilczek and their management, agricultural science. INTECH Open Access Publisher, ISBN: 978-953-51-0567-1

    Google Scholar 

  • Talekar NS (1988) Biology, damage and control of bruchid pests of mungbean. In: Shanmugasundaram S, McLean BT (eds) Mungbean: proceedings of the second international symposium. AVRDC, Tainan, pp 329–342

    Google Scholar 

  • Talukdar T, Talukdar D (2003) Inheritance of growth habit and leaf-shape in mungbean [Vigna radiata (L.) Wilczek.]. Indian J Genet 63:165–166

    Google Scholar 

  • Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8:4. https://doi.org/10.1186/1752-153x-8-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps, unlocking genetic potential from the wild. Science 277:1063–1066. https://doi.org/10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Tateishi Y (1985) A revision of the Azuki Bean Group, the subgenus Ceratotropis of the genus Vigna (Leguminosae). PhD Thesis, Tohoku University, Sendai

    Google Scholar 

  • Thakare RG, Gadgil JD, Mitra R (1988) Origin and evolution of seed protein genes in Vigna mungo and Vigna radiata In: Mungbean: proceedings of the second international symposium. Asian Vegetable Research and Development Centre, Taipei, Taiwan, p 47–52

    Google Scholar 

  • Tomooka N, Lairungruang C, Nakeeraks P, Egawa Y, Thavarasook C (1992) Development of bruchid resistant mungbean using wild mungbean germplasm in Thailand. Plant Breed 109:60–66. https://doi.org/10.1111/j.1439-0523.1992.tb00151.x

    Article  Google Scholar 

  • Tomooka N, Kashiwaba K, Vaughan D, Ishimoto M, Egawa Y (2000) The effectiveness of evaluating wild species, searching for sources of resistance to bruchid beetle in the genus Vigna sub species Ceratotropis. Euphytica 115:27–41. https://doi.org/10.1023/A:1003906715119

    Article  Google Scholar 

  • Tomooka N, Maxted N, Thavarasook C, Jayasuriya AHM (2002) Two new species, sectional designations and new combinations in Vigna subgenus Ceratotropis (Piper) Vedc., (Leguminosae, Phaseoleae). Kew Bull 57:613–624. https://doi.org/10.2307/4110989

    Article  Google Scholar 

  • Tomooka N, Vaughan DA, Kaga A (2005) Mungbean [Vigna radiata (L.) Wilczek]. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. II. Grain legumes. CRC Press, Boca Raton, pp 319–339

    Google Scholar 

  • Tomooka N, Kaga A, Isemura T, Vaughan D (2010) Vigna. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer-Verlag, Berlin, pp 291–311

    Google Scholar 

  • Tsou SCS, HSU MS (1978) The potential role of mung bean as a diet component in Asia. In: Cowell R (ed) Proceedings of the 1st international mung bean symposium. AVRDC, Shanhua, Tainan, pp 40–45

    Google Scholar 

  • US Department of Agriculture, Agricultural Research Service (2016) Nutrient Data Laboratory USDA National Nutrient Database for Standard Reference, Release 28. http://www.ars.usda.gov/nea/bhnrc/mafcl

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot 26(2):248 p

    Google Scholar 

  • Verma SNP, Krishi JN (1969) Inheritance of some qualitative characters in greengram (Phaseolus aureus Roxb.). Indian J Hered 1:105–106

    Google Scholar 

  • Vinod Kumar, Pandey SK (2018) Current status of mungbean in Madhya Pradesh – a review. Int J Curr Microbiol App Sci 7(11):1062–1072

    Google Scholar 

  • Visarathanonth P, Promsatit B (1989) Bruchid loss and control in Thailand. In: Yoshida T (ed) Loss from and control of bruchids in developing countries, in Proceedings of the 2nd international symposium on bruchids and legumes, country report session. Japanese Society of Applied Entomology and Zoology, Tokyo, pp 44–53

    Google Scholar 

  • Vishnu-Mittre B (1974) Palaeobotanical evidence in India. In: Hutchinson J (ed) Evolutionary studies in world crops: diversity and change in the Indian sub-continent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Watson JD (1977) Chemical composition of some less commonly used legumes in Ghana. Food Chem 2:267–271

    CAS  Google Scholar 

  • World Vegetable Center (2018) Annual report 2017. World Vegetable Center, Shanhua, Taiwan. Publication 18-830, 75 p

    Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Google Scholar 

  • Yao Y, Cheng X, Ren G (2015) A 90-day study of three bruchid-resistant mung bean cultivars in Sprague-Dawley rats. Food Chem Toxicol 76:80–85. https://doi.org/10.1016/j.fct.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  • Yohe JM, Poehlman JM (1975) Regression, correlations, and combining ability in mungbean (Vigna radiata (L.) Wilczek). Trop Agric 52:343–352

    Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundaram S et al (1992) RFLP mapping of major bruchid resistance gene in mungbean (Vigna radiata). Theor Appl Genet 84:839–844. https://doi.org/10.1007/bf00227394

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanthala, J., Savithramma, D.L., Gazala, P., Jambagi, B.K., Desai, S.K.P. (2020). Genomics-Assisted Breeding Green Gram (Vigna radiata (L.) Wilczek) for Accelerating Genetic Gain. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_5

Download citation

Publish with us

Policies and ethics