Skip to main content

Genetic Advancement in Dry Pea (Pisum sativum L.): Retrospect and Prospect

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Dry pea or field pea is one of the most important and highly productive cool season pulse crops grown worldwide. There are several biotic and abiotic stresses which are the key constraints in achieving potential production of dry pea. Among biotic stresses, fungal diseases such as powdery mildew, rust, root rots, wilt, common root rot and ascochyta blight are the most common and severely affecting the crop at different growth stages. In case of abiotic stresses, high temperature, drought and frost are frequently occurring and reduce quantity and quality of produces. Hence, genetic improvement for aforesaid traits is important globally and needs to be addressed using conventional and molecular breeding approaches together to accelerate the breeding programme. Genetic improvement of pea began with domestication and has been aid on by decades of research through incorporation of novel traits from wild germplasm and landraces as well as pyramiding multiple constructive alleles in well-adapted genetic backgrounds. Sincere efforts have been made during recent past in terms of improving plant type and tolerance/resistant to important biotic and abiotic stresses around the world. Several major and minor genes/QTLs have been dissected controlling the important biotic and abiotic stresses. The introgression of genes for these resistant sources is possible using marker-assisted selection to speed up dry pea breeding programme more efficiently and precisely due to the availability of comprehensive genetic maps and reliable DNA markers. This book chapter briefly elaborates about the research accomplishment made so far for improvement of major traits and future perspectives to enhance dry pea productivity through genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Gopher A (2010) Agricultural origins: centers and noncenters; a near eastern reappraisal. Crit Rev Plant Sci 29:317–328

    Google Scholar 

  • Abbo S, Lev-Yadun S, Heun M et al (2013) On the ‘lost’ crops of the neolithic Near East. J Exp Biol 64:815–822

    CAS  Google Scholar 

  • Abd-El Moneim AM, Cocks PS, Mawlawy B (1990) Genotype–environment interactions and stability analysis for herbage and seed yields of forage peas under rainfed conditions. Plant Breed 104:231–240

    Google Scholar 

  • Agrios GN (1988) Plant pathology, 3rd edn. Academic, San Diego, pp 337–338

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Ali SMB, Sharma B, Ambrose MJ (1994) Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 73:115–126

    Google Scholar 

  • Alvino A, Leone A (1993) Response to low soil water potential in pea genotypes (Pisum sativum L.) with different leaf morphology. Sci Hortic 53:21–34. https://doi.org/10.1016/0304-4238(93)90134-C

    Article  Google Scholar 

  • Amelin AV, Parakhin NV (2003) Scientific grounds for pea selection for fodder production. Kormoproizvodstvo 2:20–25. Abstract from CAB Abstract AN: 20033049804.

    Google Scholar 

  • Amelin AV, Obraztsov AS, Lakhanov AP, Uvarov VN (1991) Possibility of increasing the resistance of pea to lodging. Selektsiya-i-Semenovodstvo-Moskva 2:21–23. Abstract from CAB Abstract, AN: 911698886

    Google Scholar 

  • Anil Kumar TB, Rangaswamy KT, Ravi K (1994) Assessment of tall field pea genotypes for slow rusting resistance. Legume Res 17:79–82

    Google Scholar 

  • Anonymous (2019) Project coordinators report, (2018-19) all India coordinated research project (AICRP) on MULLaRP. ICAR-IIPR, Kanpur

    Google Scholar 

  • Armstrong GM, Armstrong JK (1974) Races of Fusarium oxysporum f sp pisi; causal agents of wilt of peas. Phytopathology 64:849–857

    Google Scholar 

  • Armstrong EL, Pate JS, Tennant D (1994) The field pea crop in South Western Australia – patterns of water use and root growth in genotypes of contrasting morphology and growth habit. Aust J Plant Physiol 21:517–532. https://doi.org/10.1071/PP9940517

    Article  Google Scholar 

  • Armstrong E, Matthews P, Carpenter D, Cassells J (1999) Desiccation and harvest monitor moisture and maturity for quality seed. Farming Ahead No: 93

    Google Scholar 

  • Arthur JC (1934) Manual of the rusts in United States and Canada. PRF, Lafayette

    Google Scholar 

  • Aslam S, Ghazanfar MU, Munir N, Hamid MI (2019) Managing fusarium wilt of pea by utilizing different application methods of fungicides. Pak J Phytopathol 31:81–88

    Google Scholar 

  • Attanayake RN, Glawe DA, McPhee KE, Dugan FM, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59:712–720. https://doi.org/10.1111/j.1365-3059.2010.02306.x

    Article  CAS  Google Scholar 

  • Auld DL, Ditterline RL, Murray GA, Swensen JB (1983) Screening peas for winterhardiness under field and laboratory conditions. Crop Sci 23:85–88

    Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60. https://doi.org/10.3114/sim.2010.65.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avia K, Pilet Nayel ML, Bahrman N, Baranger A, Delbreil B, Fontaine V, Hamon C, Hanocq E, Niarquin M, Sellier H, Vuylsteker C, Prosperi JM, Lejeune-Hénaut I (2013) Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. Theor Appl Genet 126:2353–2366. https://doi.org/10.1007/s00122-013-2140-7

    Article  CAS  PubMed  Google Scholar 

  • Backhouse D, Burgess LW, Summerell BA (2001) Biogeography of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium. APS Press, St. Paul, pp 122–137

    Google Scholar 

  • Badaruddin M, Meyer DW (2001) Factors modifying frost tolerance of legume species. Crop Sci 41:1911–1916

    Google Scholar 

  • Bai X, Luo L, Yan W, Kovi MR, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics 26(16) https://doi.org/10.1186/1471-2156-11-16

  • Baldev B (1988) Origin, distribution, taxonomy, morphology. In: Baldev B, Ramanujam S, Jain HK (eds) Pulse crops. Oxford & IBH Publishing, New Delhi, pp 3–51

    Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. Pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542. https://doi.org/10.1111/j.1365-3059.2011.02537.x

    Article  Google Scholar 

  • Bani M, Pérez De Luque A, Rubiales D, Rispail N (2018) Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f. sp. Pisi in pea. Front Plant Sci 9:199. https://doi.org/10.3389/fpls.2018.00199

    Article  PubMed  PubMed Central  Google Scholar 

  • Banniza S, Hashemi P, Warkentin TD, Vandenberg A, Davis AR (2005) The relationship among lodging, stem anatomy, degree of lignification and susceptibility to mycosphaerella blight in field pea (Pisum sativum L.). Can J Bot 83:954–967. https://doi.org/10.1139/b05-044

    Article  Google Scholar 

  • Barilli E, Rubiales D, Torres AM (2007) Identification of QTLs (quantitative trait loci) for rust (Uromyces pisi) resistance in pea (Pisum fulvum). In: 6th European conference on grain legumes: integrating legume biology for sustainable agriculture, Lisbon

    Google Scholar 

  • Barilli E, Sillero JC, Rubiales D (2009a) Characterization of resistance mechanisms to Uromyces pisi in pea. Plant Breed 128:665–670

    Google Scholar 

  • Barilli E, Sillero JC, Serrano A, Rubiales D (2009b) Differential response of pea (Pisum sativum) to rusts incited by Uromyces viciae-fabae and U. pisi. Crop Prot 28:980–986

    Google Scholar 

  • Barilli E, Sillero JC, Fernandez AM, Rubiales D (2009c) Identification of resistance to Uromyces pisi (Pers.) Wint. in Pisum spp. germplasm. Field Crops Res 114:198–203

    Google Scholar 

  • Barilli E, Satovic Z, Rubiales D et al (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159

    CAS  Google Scholar 

  • Barilli E, Cobos MJ, Carrillo E, Kilian A, Carlin J, Rubiales D (2018) A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance. Front Plant Sci 9:167. https://doi.org/10.3389/fpls.2018.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. APS Press, St Paul

    Google Scholar 

  • Benhamou N, Garand C (2001) Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47. Phytopathology 91:730–740. https://doi.org/10.1094/phyto.2001.91.8.730

    Article  CAS  PubMed  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253

    Google Scholar 

  • Ben-Ze’ev N, Zohary D (1973) Species relationships in the genus Pisum L. Israel J Bot 22:73–91

    Google Scholar 

  • Bilgrami KS, Dube HC (1982) Modern plant pathology. Vikas Publishing House, New Delhi, pp 214–225

    Google Scholar 

  • Bisby GR (1918) A Fusarium disease of garden peas in Minnesota. Phytopathology 8:77

    Google Scholar 

  • Bishop CD, Cooper RM (1983) An ultrastructural study of vascular colonization in 3 vascular wilt diseases. 1. Colonization of susceptible cultivars. Physiol Plant Pathol 23:323–343. https://doi.org/10.1016/0048-4059(83)90018-8

    Article  Google Scholar 

  • Bita CA, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanova VS, Zaytseva OO, Mglinets AV, Shatskaya NV, Kosterin OE, Vasiliev GV (2015) Nucleic-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic genes encoding acetyl-CoA carboxylase subunits. PLoS ONE 10:e0119835. https://doi.org/10.1371/journal.pone.0119835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291. https://doi.org/10.1007/s00122-014-2301-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Boker LK, Van der Schouw YT, De Kleijn MJJ, Jacques PF, Grobbee DE, Peeters PHM (2002) Intake of dietary phytoestrogens by Dutch women. J Nutr 132:1319–1328

    CAS  PubMed  Google Scholar 

  • Bonada M, Sadras VO (2015) Critical appraisal of methods to investigate the effect of temperature on grapevine berry composition. Aust J Grape Wine Res 21:1–17. https://doi.org/10.1111/ajgw.12102

    Article  CAS  Google Scholar 

  • Boswell VR (1926) The influence of temperature upon the growth and yield of garden peas. Proc Am Soc Hortic Sci 23:162–168

    Google Scholar 

  • Bourion V, Lejeune-Hénaut I, Munier-Jolain N, Salon C (2003) Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity. Eur J Agron 19:535–548

    CAS  Google Scholar 

  • Boutet G, Carvalho SA, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC genomics, 17(1), p. 121 

    Google Scholar 

  • Bouteillé M, Rolland G, Balsera C, Loudet O, Muller B (2012) Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis. PLoS ONE 7:e32319. https://doi.org/10.1371/journal.pone.0032319 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–445

    CAS  PubMed  Google Scholar 

  • Bretag TW, Keane PJ, Price TV (1995a) Effect of ascochyta blight on the grain yield of field pea (Pisum sativum) grown in Southern Australia. Aust J Exp Agric 35:531–536. https://doi.org/10.1071/EA9950531

    Article  Google Scholar 

  • Bretag TW, Price TV, Keane PJ (1995b) Importance of seed-borne inoculum in the etiology of the Ascochyta blight complex of field peas (Pisum sativum L.) grown in Victoria. Aust J Exp Agric 35:525–530. https://doi.org/10.1071/EA9950525

    Article  Google Scholar 

  • Bretag TW, Keane PJ, Price TV (2006) The epidemiology and control of ascochyta blight in field peas: a review. Aust J Agric Res 57:883–902

    Google Scholar 

  • Bueckert RA, Clarke JM (2013) Review: annual crop adaptation to abiotic stress on the Canadian prairies: six case studies. Can J Plant Sci 93:375–385. https://doi.org/10.4141/cjps2012-184

    Article  Google Scholar 

  • Bueckert RA, Wagenhoffer S, Hnatowich G, Warkentin TD (2015) Effect of heat and precipitation on pea yield and reproductive performance in the field. Can J Plant Sci 95:629–639. https://doi.org/10.4141/CJPS-2014-342

    Article  Google Scholar 

  • Burstin J, Marget P, Huart M et al (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breeding 120:311–317 

    Google Scholar 

  • Byrne OM, Hardie DC, Khan TN et al (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Crop Pasture Sci 59:854–862

    CAS  Google Scholar 

  • Carrillo E, Satovic Z, Aubert G, Boucherot K, Rubiales D, Fondevilla S (2014) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33(7):1133–1145. https://doi.org/10.1007/s00299-014-1603-x

    Article  CAS  PubMed  Google Scholar 

  • Chand R, Srivastava CP, Singh BD, Sarode SB (2006) Identification and characterization of slow rusting components in pea (Pisum sativum L.). Genet Resour Crop Evol 53:219–224

    Google Scholar 

  • Chang KF, Hwang SF, Gossen BD, Turnbull GD, Howard RJ, Blade SF (2004) Effects of soil temperature, seeding depth, and seeding date on rhizoctonia seedling blight and root rot of chickpea. Can J Plant Sci 84:901–907

    Google Scholar 

  • Chatterton S, Bowness R, Harding MW (2015) First report of root rot of field pea caused by Aphanomyces euteiches in Alberta, Canada. Plant Dis 99:288

    CAS  PubMed  Google Scholar 

  • Chen YL, Huang R, Xiao YM, Lu P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136:4096–4103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilvers MI, Rogers JD, Dugan FM, Stewart JE, Chen WD, Peever TL (2009) Didymella pisi sp nov, the teleomorph of Ascochyta pisi. Mycol Res 113:391–400. https://doi.org/10.1016/j.mycres.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  • Chimwamurombe PM, Khulbe RK (2011) Domestication. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Cambridge, MA, pp 19–34

    Google Scholar 

  • Ciancio A, Mukerji KG (2008) Integrated management of diseases caused by fungi, phytoplasma and bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8571-0

    Book  Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173

    Google Scholar 

  • Clement SL, McPhee KE, Elberson LR et al (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum×Pisum fulvum interspecific crosses. Plant Breed 128:478

    Google Scholar 

  • Clulow SA, Lewis BG, Matthews P (1991) A pathotype classification for Ascochyta pinodes. J Phytopathol 131:322–332. https://doi.org/10.1111/j.1439-0434.1991.tb01203.x

    Article  Google Scholar 

  • Coles ND, Zila CT, Holland JB (2011) Allelic effect variation at key photoperiod response quantitative trait loci in maize. Crop Sci 51:1036–1049. https://doi.org/10.2135/cropsci2010.08.0488

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. https://doi.org/10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Conner RL, Chang KF, Hwang SF, Warkentin TD, McRae KB (2013) Assessment of tolerance for reducing yield losses in field pea caused by Aphanomyces root rot. Can J Plant Sci 93:473–482

    Google Scholar 

  • Considine MJ, Siddique KHM, Foyer CH (2017) Nature’s pulse power: legumes, food security and climate change. J Exp Bot 68:1815–1818. https://doi.org/10.1093/jxb/erx099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correll JC (1991) The relationship between formae speciales, races and vegetative compatibility groups in Fusarium oxysporum. Phytopathology 81:1061–1064

    Google Scholar 

  • Coyne CJ, Inglis DA, Whitehead SJ, McClendon MT, Muehlbauer FJ (2000) Chromosomal location of Fwf, the Fusarium wilt race 5 resistance gene in Pisum sativum. Pisum Genet 32:20–22

    Google Scholar 

  • Coyne CJ, Porter LD, Inglis DA, Grunwald NJ, McPhee KE, Muehlbauer FJ (2008) Registration of W6 26740, W6 26743 and W6 26745 pea germplasm resistant to Fusarium root rot. J Plant Regist 2:137–139

    Google Scholar 

  • Coyne CJ, Pilet-Nayel ML, McGee RJ, Porter LD, Smýkal P, Grünwald NJ (2015) Identification of QTL controlling high levels of partial resistance to Fusarium solani f. sp. pisi in pea. Plant Breed 134(4):446–453

    Google Scholar 

  • Coyne CJ, Porter LD, Boutet G et al (2019) Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol 19:98. https://doi.org/10.1186/s12870-019-1699-

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummins GB (1978) Rust fungi on legumes and composites in North America. University of Arizona Press, Tucson

    Google Scholar 

  • Dahl WJ, Foster LM, Tyler RT (2012) Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108:S3–S10. https://doi.org/10.1017/S0007114512000852

    Article  CAS  PubMed  Google Scholar 

  • Daie J (1988) Mechanism of drought induced alteration in assimilate partitioning and transport in crops. Crit Rev Plant Sci 7:117–137

    CAS  Google Scholar 

  • Dang J, Arcot J, Shrestha A (2000) Folate retention in selected processed legumes. Food Chem 68:295–298

    CAS  Google Scholar 

  • Das A, Gupta S, Parihar AK, Saxena D, Singh D, Singha KD, Kushwaha KP, Chan R, Bal RS, Chandra S (2019) Deciphering genotype-by-environment interaction for targeting test environments and rust resistant genotypes in field pea (Pisum sativum L.). Front Plant Sci 10:825 

    Google Scholar 

  • Daveby YD, Aman P, Betz JM, Musser SM (1998) Effect of storage and extraction on soyasaponin to 2,3-dihydro-2-5-dihydroxy-6-methyl-4-pyrone-conjugated soyasaponin I in dehulled peas (Pisum sativum L.). J Sci Food Agric 78:141–146

    CAS  Google Scholar 

  • Davidson JA, Krysinska-Kaczmarek M, Kimber RBE et al (2004) Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi). Aust Plant Pathol 33:413–417

    Google Scholar 

  • Davidson JA, Hartley D, Priest M, Herdina MKK, Mckay A, Scott ES (2009) A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101:120–128

    CAS  PubMed  Google Scholar 

  • Davies DR (1977a) Creation of new models for crop plants and their use in plant breeding. Appl Biol 2:87–127

    CAS  Google Scholar 

  • Davies DR (1977b) Restructuring the pea plant. Sci Prog 64:201–214

    Google Scholar 

  • Davies PA, Pham TNT (2017) A method to select for reproductive frost tolerance in field pea (Pisum sativum L.). J Agron Crop Sci 203(4):332–337. https://doi.org/10.1111/jac.12197

    Article  Google Scholar 

  • Davis DW, Fritz VA, Pfleger FL, Percich JA, Malvick DK (1995) MN 144, MN 313 and MN 314: garden pea lines resistant to root rot caused by Aphanomyces euteiches Drechs. HortSci 30(3):639–640

    Google Scholar 

  • De Candolle A (2007) Origin of cultivated plants. Kesinger Publishing, Montana

    Google Scholar 

  • De Sousa-Majer MJ, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55:497–505

    PubMed  Google Scholar 

  • Desgroux A, L’Anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C et al (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:24

    Google Scholar 

  • Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel ML, Bourion V (2018) Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea. Front Plant Sci 8:2195. https://doi.org/10.3389/fpls.2017.02195

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li CX, Knox AK, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Isaac P, Ranade S, Belajouza M, Cousin R, Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    CAS  PubMed  Google Scholar 

  • Dita M, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Google Scholar 

  • Dixit GP, Parihar AK (2014) Aman-A high yielding fieldpea variety with better standing ability. E-Publication on http://krishisewa.com/cms/varieties/pulse-varieties/368-fieldpea-variety.html

  • Dixit GP, Parihar AK, Gupta S (2014) Perspective for increasing fieldpea production in India. Handbook on minor and imported pulses of India. Published by commodityindia.com, pp 37–39

  • Dixit GP, Gautam NK (2015) Fieldpea (Pisum sativum L.). In: Bharadwaj DN (eds) Breeding Indian Field Crops – Fieldpea (Pisum sativum L.). Agrobios, India, pp. 195–216

    Google Scholar 

  • Donald CM, Hamblin J (1983) The convergent evolution of annual seed crops in agriculture. Adv Agron 36:97–139

    Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA et al (1997) A phylogeny of the chloroplast gene RbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554

    CAS  PubMed  Google Scholar 

  • Duarte J, Riviere N, Baranger A, Aubert G, Burstin J, Cornet L et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126. https://doi.org/10.1186/1471-2164-15-126

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodele S, Voedts N, Devaux R, Frise M, Avia K, Hilbert JL, Bahrman N, Hanocq E, Lejeune-Henaut I, Delbreil B (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571

    CAS  PubMed  Google Scholar 

  • Duparque M (1996) Main history steps of the pea improvement. Grain Legum 12:18

    Google Scholar 

  • Duthion C, Ney B, Turc O (1987) Compte-rendu des travaux effectués sur pois de printemps lors de la campagne 1987 (cv Finale, Amino, Solara, Frisson). Internal report. INRA, Dijon, p 23

    Google Scholar 

  • Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K (2011) Genetic variation of g-tocopherol methyltransferase gene contributes to elevated a-tocopherol content in soybean seeds. BMC Plant Biol 11:152. https://doi.org/10.1186/1471-2229-11-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    CAS  PubMed  Google Scholar 

  • Ekvall J, Stegmark R, Nyman M (2006) Content of low molecular weight carbohydrates in vining peas (Pisum sativum) related to harvest time, size and brine grade. Food Chem 94:513–519

    CAS  Google Scholar 

  • Emeran AA, Sillero JC, Niks RE, Rubiales D (2005) Infection structures of host-specialized isolates of Uromyces viciae-fabae and of others Uromyces infecting leguminous crops. Plant Dis 89:17–22

    CAS  PubMed  Google Scholar 

  • EPPO (2009). Standards pea. Available at http://archives.eppo.org/EPPO Standards/PP2 GPP/pp 2-14-e.doc

  • FAOSTAT (2011) Food and agriculture organization statistics. Food security data and definitions 2005–2007

    Google Scholar 

  • FAOSTAT (2019) Food and agriculture organization statistics. http://www.fao.org/faostat/en/#data/QC

  • Farooq M, Nadeem F, Gogoi N, Ullah A, Alghamdi SS, Nayyar H, Siddique KHM (2017) Heat stress in grain legumes during reproductive and grain-filling phases. Crop Pasture Sci 68. https://doi.org/10.1071/CP17012

  • Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE, Gossen BD, McLaren DL, Xue AG (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can J Plant Sci 91:199–204

    Google Scholar 

  • Fernando WMU, Hill JE, Zello GA et al (2010) Diets supplemented with chickpea or its main oligosaccharide component raffinose modify fecal microbial composition in healthy adults. Benefic Microbes 1:197–207

    CAS  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea: a review. Agron Sustain Dev 32:401–409. https://doi.org/10.1007/s13593-011-0033-1

    Article  CAS  Google Scholar 

  • Fondevilla S, Avila CM, Cubero JI, Rubiales D (2005) Response to Ascochyta pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315. https://doi.org/10.1111/j.1439-0523.2005.01104.x

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopical and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007a) Identification and characterization of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed 126:113–119

    Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT et al (2007b) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2007c) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur J Plant Pathol 119:53–58

    Google Scholar 

  • Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008a) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200

    CAS  Google Scholar 

  • Fondevilla S, Rubiales D, Zatovic S, Torres AM (2008b) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454

    CAS  Google Scholar 

  • Fondevilla S, Krajinski F, Kuster H, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistance reaction to Mycospherella pinodes in pea using micro-array technology. BMC Genomics 12:28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2013) Identification of genes involved in resistance to Didymella pinodes in pea by deep Super SAGE genome-wide transcriptome profiling. Book of abstracts of First Legume Society Conference, p 148

    Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112. https://doi.org/10.1038/nplants.2016.112

    Article  PubMed  Google Scholar 

  • Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged microsatellite markers linked to the sbm1 gene for resistance to pea seed borne mosaic virus in pea. Plant Breed 121:512–516 

    Google Scholar 

  • Garry G, Jeuffroy MH, Tivoli B (1998) Effects of ascochyta blight (Mycosphaerella pinodes Berk. & Blox.) on biomass production, seed number and seed weight of dried-pea (Pisum sativum L.) as affected by plant growth stage and disease intensity. Ann Appl Biol 132:49–59. https://doi.org/10.1111/j.1744-7348.1998.tb05184.x

    Article  Google Scholar 

  • Georgieva K, Lichtenthaler HK (1999) Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol 155(3):416–423

    CAS  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–560

    CAS  Google Scholar 

  • Gonzalez EM., Arrese Igor C, Aparicio Tejo PM, Royuela M, Koyro HW (2001) Osmotic adjustment in different leaf structures of semileafless pea (Pisum sativum L.) subjected to water stress. In: Plant nutrition. Food security and sustainability of agro-ecosystems through basic and applied research. Developments in plant and soil sciences, Vol. 92. WJ Horst, MK Schenk, AM Bürkert, N Claassen, H Flessa, WB Frommer, H Goldbach, HV Olfs, V Römheld, B Sattelmacher, U Schmidhalter, S Schubert, N van Wire’n, L Wittenmayer (Springer, Berlin), pp. 374–375

    Google Scholar 

  • Gonzalez EM, Arrese Igor C, Aparicio Tejo PM, Royuela M, Koyro HW (2002) Solute heterogeneity and osmotic adjustment in different leaf structures of semi-leafless pea (Pisum sativum L.) subjected to water stress. Plant Biol 4:558–566

    Google Scholar 

  • Gretenkort MA, Helsper JPFG (1993) Disease assessment of pea lines with resistance to foot rot pathogens: protocols for in vitro selection. Plant Pathol 42:676–685

    Google Scholar 

  • Gritton ET (1990) Registration of five pea root rot resistant germplasm lines of processing pea. Crop Sci 30:1166–1167

    Google Scholar 

  • Gritton ET, Ebert RD (1975) Interaction of planting date and powdery mildew on pea plant performance. Am Soc Horticult Sci 100:137–142

    Google Scholar 

  • Grunwald NJ, Coffman VA, Kraft JM (2003) Sources of partial resistance to Fusarium root rot in the Pisum core collection. Plant Dis 87:1197–1200

    CAS  PubMed  Google Scholar 

  • Grzesiak S, Iijima M, Kono Y, Yamauchi A (1997) Differences in drought tolerance between cultivars of field bean and field pea. A comparison of drought-resistant and drought-sensitive cultivars. Acta Physiol Plant 19(3):349–357

    Google Scholar 

  • Guilioni L, Wery J, Tardieu F (1997) Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Ann Bot 80:159–168. https://doi.org/10.1006/anbo.1997.0425

    Article  Google Scholar 

  • Guilioni L, Wery J, Lecoeur J (2003) High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct Plant Biol 30:1151–1164. https://doi.org/10.1071/FP03105

    Article  PubMed  Google Scholar 

  • Guillon F, Champ MM (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88:S293–S306

    CAS  PubMed  Google Scholar 

  • Gupta RP (1990) Evaluation of pea germplasm for their reaction to powdery mildew and rust. Indian J Pulses Res 3:186–188

    Google Scholar 

  • Gupta SK, Gupta M (2019) Fusarium wilt of pea-A mini review. Plant Dis Res 34(1):1–9

    Google Scholar 

  • Gupta S, Parihar AK (2015) Fieldpea cultivation in India (pocket guide), AICRP on MULLaRP. Indian Institute of Pulses Research, Kanpur. Extension Bulletin, p 35

    Google Scholar 

  • Gussakovsky EE, Salakhutdinov BA, Shahak Y (2002) Chiral macroaggregates of LHCII detected by circularly polarized luminescence in intact pea leaves are sensitive to drought stress. Funct Plant Biol 29:955–963

    CAS  PubMed  Google Scholar 

  • Hagedorn WA (1989) Compendium of pea diseases. The American Phytopathological Society, St. Paul, pp 16–18

    Google Scholar 

  • Hagedorn DJ (1991) Handbook of pea diseases A1167. University of Wisconsin-Extension, Madison

    Google Scholar 

  • Haglund WA (1984) Fusarium wilts. In: Hagedorn DJ (ed) Compendium of pea diseases. The American Phytopathological Society, St. Paul, pp 22–24

    Google Scholar 

  • Haglund WA (2001) Compendium of pea diseases, 2nd edn. The American Phytopathological Society, St. Paul, pp 14–16

    Google Scholar 

  • Haglund WA, Kraft JM (2001) Fusarium wilt. In: Kraft JM, Pfleger FL (eds) Compendium of pea diseases and pests, 2nd edn. APS Press, St. Paul, pp 14–16

    Google Scholar 

  • Haldimann P, Feller URS (2005) Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ 28(3):302–317

    CAS  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton

    Google Scholar 

  • Hamid A, Bhat NA, Sofi TA, Bhat KA, Asif M (2012) Management of root rot of pea (Pisum sativum L.) through bioagents. Afr J Microbiol Res 6(44):7156–7161

    Google Scholar 

  • Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P et al (2013) QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol 13:45. https://doi.org/10.1186/1471-2229-13-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon C, Baranger A, Coyne CJ, McGee RJ, LeGoff I, L’Anthoëne V et al. (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123:261–281. https://doi.org/10.1007/s00122-011-1582-z

  • Hance ST, Grey W, Weeden NF (2004) Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius. Pisum Genet 36:9–13

    Google Scholar 

  • Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269

    CAS  PubMed  Google Scholar 

  • Hashemi P, Banniza S, Davis A, Warkentin T, Vandenberg A (2003) Relationships between lodging, stem anatomy, and reaction to mycosphaerella blight in field pea. In: Saskatchewan pulse growers. Pulse Days, Saskatoon, p 64

    Google Scholar 

  • Heath MC, Hebblethwaite PD (1985) Agronomic problems associated with the pea crop. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop: a basis for improvement. Butterworth, London, pp 19–30

    Google Scholar 

  • Hedges LJ, Lister C (2006) The nutritional attributes of legumes. Crop & food research confidential report no. 1745. A report prepared for horticulture New Zealand

    Google Scholar 

  • Heredia-Guerrero JA, Guzman-Puyol S, Benitez JJ, Athanassiou A, Heredia A, Dominguez E (2018) Plant cuticle under global change: biophysical implications. Glob Chang Biol 24:2749–2751

    PubMed  Google Scholar 

  • Heringa RJ, Van Norel A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe Polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169

    Google Scholar 

  • Holdsworth WL, Gazave E, Cheng P, Myers JR, Gore MA, Coyne CJ, McGee RJ, Mazourek M (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hortic Res 4:17017. https://doi.org/10.1038/hortres.2017.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homer A, Sahin KPU (2016) Evaluation of Pea (Pisum sativum L.) germplasm for winter hardiness in Central Anatolia, Turkey, using field and controlled environment. Czech J Genet Plant Breed 52:55–63

    Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Abiotic stresses-plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 277–300

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    CAS  Google Scholar 

  • Huang S, Gali KK, Tar’an B, Warkentin TD, Bueckert RA (2017) Pea phenology: crop potential in a warming environment. Crop Sci 57:1540–1551

    CAS  Google Scholar 

  • Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–867. https://doi.org/10.1111/j.1364-3703.2011.00718.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SF, Howard RJ, Chang KF, Park B, Lopetinsky K, McAndrew DW (1995) Screening of field pea cultivars for resistance to Fusarium root rot under field conditions in Alberta. Can Plant Dis Surv 75:51–56

    Google Scholar 

  • Iglesias-Garcia R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33:1768

    CAS  Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in legumes. Euphytica 147:201–221. https://doi.org/10.1007/s10681-006-6963-z

    Article  Google Scholar 

  • Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3b-hydroxylation of GA20 to GA1. Planta 160:455–463

    CAS  PubMed  Google Scholar 

  • IPCC (2018) IPCC-SR15, global warming of 1.5°C. Available at: http://www.ipcc.ch/report/sr15/. Accessed 17 June 2019

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181

    CAS  PubMed Central  Google Scholar 

  • Iwaya-Inoue M, Motooka K, Ishibashi Y, Fukuyama M (2003) Characteristic water status in dwarf pea in relation to drought resistance. J Facul Agric Kyushu Univ 48:29–38

    Google Scholar 

  • Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ (2010) Genetic analysis of heat tolerance at anthesis in rice. Crop Sci 50:1633–1641. https://doi.org/10.2135/cropsci2009.09.0516

    Article  CAS  Google Scholar 

  • Jain S, Weeden NF, Porter LD, Eigenbrode SD, McPhee K (2013) Finding linked markers to En for efficient selection of pea enation mosaic virus. Crop Science 53:1–8. https://doi.org/10.2135/cropsci2013.04.0211

  • Jain S, Weeden NF, Kumar A, Chittem K, McPhee K (2015) Functional codominant marker for selecting the Fw gene conferring resistance to Fusarium wilt race 1 in pea. Crop Sci 55:2639–2646. https://doi.org/10.2135/cropsci2015.02.0102

    Article  CAS  Google Scholar 

  • Jamieson PD, Wilson DR, Hanson R (1984) Analysis of responses of field peas to irrigation and sowing date. Models of growth and water use. Proc Agron Soc N Z 14:75–81

    Google Scholar 

  • Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274

    CAS  Google Scholar 

  • Jeuffroy MH, Duthion C, Meynard JM, Pigeaire A (1990) Effect of a short period of high day temperatures during flowering on the seed number per pod of pea (Pisum sativum L). Agronomie 2:139–145

    Google Scholar 

  • Jeuffroy MH, Lecoeur J, Roche R (2010) The seed number. In: Munier-Jolain N, Biarnès V, Chaillet I, Lecoeur J, Jeuffroy MH (eds) Physiology of the pea crop. CRC Press, Enfield, pp 104–131

    Google Scholar 

  • Jha AB, Warkentin TD, Gurusamy V, Tar’an B, Banniza S (2012) Identification of ascochyta blight resistance in wild Pisum species for use in pea breeding. Crop Sci 52:2462–2468. https://doi.org/10.2135/cropsci2012.04.0242

    Article  Google Scholar 

  • Jha AB, Arganosa G, Tar’an B, Diederichsen A, Warkentin TD (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761. https://doi.org/10.1007/s10722-012-9871-1

    Article  Google Scholar 

  • Jha AB, Tar’an B, Diapari M, Sindhu A, Shunmugam A, Bett K, Warkentin TD (2015) Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202(2):189–197

    CAS  Google Scholar 

  • Jha AB, Tar’an B, Stonehouse R, Warkentin TD (2016) Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci 56:2926–2939. https://doi.org/10.2135/cropsci2016.01.0001

    Article  CAS  Google Scholar 

  • Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine mapping of QTLs for Ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8:765. https://doi.org/10.3389/fpls.2017.00765

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Croatia, pp 45–83

    Google Scholar 

  • Jiang Y (2016) Effect of heat stress on pollen development and seed set in field pea. Dissertation/PhD’s thesis, University of Saskatchewan, Saskatoon

    Google Scholar 

  • Jiang Y, Lahlali R, Karunakaran C, Kumar S, Davis AR, Bueckert RA (2015) Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ 38(11):2387–2397

    CAS  PubMed  Google Scholar 

  • Jiang Y, Bueckert RA, Warkentin TD, Davis AR (2017a) High temperature effects on in vitro pollen germination and seed set in field pea. Can J Plant Sci 98(1):71–80

    Google Scholar 

  • Jiang Y, Diapari M, Bueckert RA, Tar’an B, Warkentin TD (2017b) Population structure and association mapping of traits related to reproductive development in field pea. Euphytica 213(9):215. https://doi.org/10.1007/s10681-017-2006-1

    Article  Google Scholar 

  • Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, Bueckert RA (2018) Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant, cell & environment 42:354–372

    Google Scholar 

  • Jiang Y, Davis AR, Vujanovic V, Bueckert RA (2019) Reproductive development response to high daytime temperature in field pea. J Agron Crop Sci:1–10. https://doi.org/10.1111/jac.12328

  • Jones FR (1923) Stem and root rot of peas in the United States caused by species of Fusarium. Agric Res 26:459–476

    Google Scholar 

  • Jones FR, Drechsler C (1925) Root rot of peas in the United States caused by Aphanomyces euteiches. J Agric Res 30(4):293–325

    Google Scholar 

  • Kalt W (2001) Interspecific variation in anthocyanins, phenolics and antioxidant capacity among genotypes of high bush and low bush blueberries (Vaccinium section cyanococcus spp.). J Agric Food Chem 49:4761–4767

    CAS  PubMed  Google Scholar 

  • Kamboj RK, Pandey MP, Chaube HS (1990) Inheritance of resistance to Fusarium wilt in Indian lentil germplasm (Lens culinaris Medik.). Euphytica 50:113–117. https://doi.org/10.1007/BF00023633

    Article  Google Scholar 

  • Karatas I, Ozturk L, Demir Y, Unlukara A, Kurunc A, Duzdemir O (2012) Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicol Ind Health:1–8. https://doi.org/10.1177/0748233712462471

  • Karr EJ, Linck AJ, Swanson CA (1959) The effect of short periods of high temperature during day and night periods on pea yields. Am J Bot 46:91–93

    Google Scholar 

  • Katiyar RP, Ram RS (1987) Genetics of rust resistance in pea. Indian J Genet 47:46–48

    Google Scholar 

  • Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2009) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Molecular Breeding, https://doi.org/10.1007/s11032-009-9322-7

  • Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25:229–237. https://doi.org/10.1007/s11032-009-9322-7

    Article  CAS  Google Scholar 

  • Kazmi MR, Jeelani G, Bhatti MH (2002) Yield potential of some promising pea cultivars against powdery mildew. Pak J Agric Res 17:97–98

    Google Scholar 

  • Khan TN, French RJ, Hardie DC (1996) Breeding field peas for Western Australia: progress and problems. Pisum Genet 28:5–12

    Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crop Res 148:61–77

    Google Scholar 

  • Kleijn MJJ, Schouw YTVD, Wilson PWF, Adlercreutz H, Mazur W, Grobbee DE, Jacques PF (2001) Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study. J Nutr 131:1826–1832

    PubMed  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K et al (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330. https://doi.org/10.1007/s00122-014-2299-6

    Article  PubMed  Google Scholar 

  • Knott CM, Belcher SJ (1998) Optimum sowing dates and plant populations for winter peas (Pisum sativum). J Agric Sci 131:449–454

    Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Osmotic stress-and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum. Physiol Plant 133:406–416

    CAS  PubMed  Google Scholar 

  • Kraft JM (1975) A rapid technique for evaluating pea lines for resistance to Fusarium root rot. Plant Dis Rep 59:1007–1011

    Google Scholar 

  • Kraft JM (1992) Registration of 90-2079, 90-2131 and 90-2322 pea germplasms. Crop Sci 32:1076

    Google Scholar 

  • Kraft JM (1994) Fusarium wilt of peas (a review). Agronomie 14:561–567

    Google Scholar 

  • Kraft JM (2000) AEP workshop on screening for disease resistance in grain legumes. In: Monreal AR, Redondo RL (eds) AEP Workshop on Disease Evaluation. Standardisation Diseases Resistance Screening in Grain Legumes Germplasm Banks. Junta de Castilla y Leon, Servicio de Investigatcion y Tecnologia Agraria, Mata Digital s.l., Valladolid, pp 61–65

    Google Scholar 

  • Kraft JM (2001) Fusarium root rot. In: Kraft JM, Pfleger FL (eds) Compendium of pea diseases and pests, 2nd edn. APS Press, St. Paul, pp 13–14

    Google Scholar 

  • Kraft JM, Boge W (2001) Root characteristics in pea in relation to compaction and Fusarium rootrot. Plant Dis 85:936–940

    PubMed  Google Scholar 

  • Kraft JM, Coffman VA (2000a) Registration of 96-2052, 96-2058, 96-2068, 96-2198 and 96-2222 pea germplasms. Crop Sci 40:301–302

    Google Scholar 

  • Kraft JM, Coffman VA (2000b) Registration of 97-261 and 97-1254 pea germplasms. Crop Sci 40:302–303

    Google Scholar 

  • Kraft JM, Giles RA (1979) Increasing green pea yields with root rot resistance and subsoiling. In: Schippers B (ed) Soil-borne plant pathogens. Academic, New York, pp 407–413

    Google Scholar 

  • Kraft JM, Pfleger FL (2001) Compendium of pea diseases and pests, 2nd edn. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Kraft JM, Roberts DD (1970) Resistance in peas to Fusarium and Pythium root rot. Phytopathology 60:1814–1817

    Google Scholar 

  • Kraft JM, Roberts DD (1969) Influence of soil water and temperature on the pea root rot complex caused by Pythium ultimum and Fusarium solani f. sp. pisi. Phytopathology 59:149–152

    Google Scholar 

  • Kraft JM, Wilkins DE (1989) The effects of pathogen numbers and tillage on root disease severity, root length, and seed yields in green peas. Plant Dis 73:884–887

    Google Scholar 

  • Kraft JM, Haware MP, Hussein MM (1988) Root rot and wilt diseases of food legumes. In: World crops: cool season food legumes. Springer, Dordrecht, pp 565–575

    Google Scholar 

  • Kraft JM, Larsen RC, Inglish DA (1996) Disease of pea. In: Allen D (ed) The pathology of food and pasture legumes. CABI, Wallingford, pp 325–370

    Google Scholar 

  • Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82(2):251–253

    PubMed  Google Scholar 

  • Kumar H, Singh RB (1981) Genetic analysis of adult plant resistance to powdery mildew in Pea (Pisum Sativum). Euphytica 30:147–157

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: A review. Plant Breed 130:297–313. https://doi.org/10.1111/j.1439-0523.2011.01851.x

    Article  CAS  Google Scholar 

  • Kushwaha C, Chand R, Srivastava C (2006) Role of aeciospores in outbreaks of pea (Pisum sativum) rust (Uromyces fabae). Eur J Plant Pathol 115:323–330

    Google Scholar 

  • Kushwaha C, Srivastava CP, Chand R, Singh BD (2007) Identification and evaluation of a critical time for assessment of slow rusting in pea against Uromyces fabae. Field Crop Res 103:1–4

    Google Scholar 

  • Kwon SJ, Smykal P, Hu J, Kim SJ, McGee RJ, McPhee K, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea. Plant Breed 132:642–648. https://doi.org/10.1111/pbr.12085

    Article  CAS  Google Scholar 

  • Kwon SJ, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaugan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide market-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum) core collection. Genes and Genomics 34(3):305–20. https://doi.org/10.1007/s13258-011-0213-z

  • Laconde JP, Girard C, Maufras JY, Cure B, Plancquaert P (1987) Protéagineux: résultats de l’expérimentation (1986). Perspect Agric 111:57–66

    Google Scholar 

  • Ladizinsky G, Abbo S (2015) The Pisum genus. In: Ladizinsky G, Abbo S (eds) The search for wild relatives of cool season legumes. Springer, Cham, pp 55–69

    Google Scholar 

  • Lahlal R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, Hallin E, Bueckert R (2014) ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci 5:747

    Google Scholar 

  • Lambert RG, Linck AJ (1958) Effects of high temperature on yield of peas. Plant Physiol 33:347–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavaud C, Lesné A, Piriou C, Le Roy G, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel ML (2015) Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near isogenic lines. Theor Appl Genet 128:2273–2288

    CAS  PubMed  Google Scholar 

  • Lavaud C, Baviere M, Le Roy G, Hervé MR, Moussart A, Delourme R, Pilet-Nayel ML (2016) Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC Plant Biol 16:166. https://doi.org/10.1186/s12870-016-0822-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski M (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594

    PubMed  Google Scholar 

  • Le May C, Ney B, Lemarchand E, Schoeny A, Tivoli B (2009) Effect of pea plant architecture on spatiotemporal epidemic development of ascochyta blight (Mycosphaerella pinodes) in the field. Plant Pathol 58:332–343. https://doi.org/10.1111/j.1365-3059.2008.01947.x

    Article  Google Scholar 

  • Lebeda A, Švábová L (1997) Variation in response of several wild Pisum spp. to Fusarium solani and Fusarium oxysporum. Cereal Res Commun 25:845–847

    Google Scholar 

  • Lecoeur J, Guilioni L (2010) Abiotic stresses. In: Munier-Jolain N, Biarnès V, Chaillet I, Lecoeur J, Jeuffroy MH (eds) Physiology of the pea crop. CRC Press, Enfield, pp 136–181

    Google Scholar 

  • Lejeune-Henaut I, Bourion V, Eteve G, Cunot E, Delhaye K, Desmyter C (1999) Floral initiation in field-grown forage peas is delayed to a greater extent by short photoperiods, than in other types of European varieties. Euphytica 109:201–211

    Google Scholar 

  • Lejeune-Henaut I et al (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    CAS  PubMed  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. https://doi.org/10.1186/1471-2229-13-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress: chilling, freezing, and high temperature stresses, vol 1. Academic Press, Cambridge

    Google Scholar 

  • Lewis G, Schrirer B, Mackinder B et al (eds) (2005) Legumes of the world. Royal Botanical Gardens, Kew

    Google Scholar 

  • Li YP, You MP, Khan TN, Finnegan PM, Barbetti MJ (2011) First report of Phoma herbarum on fieldpea (Pisum sativum) in Australia. Plant Dis 95:1590. https://doi.org/10.1094/PDIS-07-11-0594

    Article  CAS  PubMed  Google Scholar 

  • Liu SM, O’Brien L, Moore SG (2003) A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust J Exp Agric 43:373–378

    Google Scholar 

  • Liu JF, Cao TS, Feng J, Chang KF, Hwang SF, Strelkov SE (2013) Characterization of the fungi associated with ascochyta blight of field pea in Alberta, Canada. Crop Prot 54:55–64. https://doi.org/10.1016/j.cropro.2013.07.016

    Article  Google Scholar 

  • Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the control of ascochyta blight in field peas (Pisum sativum L.) caused by ascochyta pinodes in Zhejiang Province, China. Front Microbiol 7:481. https://doi.org/10.3389/fmicb.2016.00481

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Fang L, Yang T, Zhang X, Hu J et al (2017) Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 7:5919. https://doi.org/10.1038/s41598-017-06222-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li J, Zhu Y, Jones A, Rose RJ, Song Y (2019a) Heat stress in legume seed setting: effects, causes, and future prospects. Front Plant Sci 10:938. https://doi.org/10.3389/fpls.2019.00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Karunakaran C, Lahlali R, Warkentin T, Bueckert RA (2019b) Genotypic and heat stress effects on leaf cuticles of field pea using ATR-FTIR spectroscopy. Planta 249:601. https://doi.org/10.1007/s00425-018-3025-4

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    CAS  PubMed  Google Scholar 

  • Lockwood JL (1962) A seedling test for evaluating resistance of pea to Fusarium root rot. Phytopathology 52:557–559

    Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet Nayel ML, Aubert G et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031. https://doi.org/10.1007/s00122-005-0014-3

    Article  CAS  PubMed  Google Scholar 

  • Lucas MR, Ehlers JD, Huynh BL, Diop NN, Roberts PA, Close TJ (2013) Markers for breeding heat-tolerant cowpea. Mol Breed 31:529–536. https://doi.org/10.1007/s11032-012-9810-z

    Article  Google Scholar 

  • Lunde MS, Hjellset VT, Holmboe-Ottesen G et al (2011) Variations in postprandial blood glucose responses and satiety after intake of three types of bread. J Nutr Metab:437587. https://doi.org/10.1155/2011/437587

  • Makasheva RK (1979) Gorokh (pea). In: Korovina ON (ed) Kulturnaya flora SSR. Kolos Publishers, Leningrad, pp 1–324

    Google Scholar 

  • Malvick DK, Percich JA (1998a) Genotypic and pathogenic diversity among pea-infecting strains of Aphanomyces euteiches from the central and western United Sates. Phytopathology 88:915–921

    CAS  PubMed  Google Scholar 

  • Malvick DK, Percich JA (1998b) Variation in pathogenicity and genotype among single-zoospore strains of Aphanomyces euteiches. Phytopathology 88(1):52–57

    CAS  PubMed  Google Scholar 

  • Marinangeli CP, Jones PJ (2011) Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br J Nutr 105:110–117

    CAS  PubMed  Google Scholar 

  • Marinangeli CP, Kassis AN, Jones PJ (2009) Glycemic responses and sensory characteristics of whole yellow pea flour added to novel functional foods. J Food Sci 74:S385–S389

    CAS  PubMed  Google Scholar 

  • Martin RJ, Jamieson PD (1996) Effect of timing and intensity of drought on the growth and yield of field peas (Pisum sativum L.). N Z J Crop Hortic Sci 24(2):167–174. https://doi.org/10.1080/01140671.1996.9513949

    Article  Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1997) Mendel’s dwarfing gene: cDNAs from the Le alleles and the function of the expressed proteins. Proc Natl Acad Sci U S A 94:8907–8911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marx GA, Schroeder WT, Provvidenti R, Mishanec W (1972) A genetic study of tolerance in pea (Pisum sativum L.) to Aphanomyces root rot. J Am Soc Hortic Sci 97:619–621

    Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436. https://doi.org/10.1007/s10681-010-0151-x

    Article  Google Scholar 

  • Maude RB (1966) Pea seed infection by Mycosphaerella pinodes and Ascochyta pisi and its control by seed soaks in thiram and captan suspensions. Ann Appl Biol 57:193–200. https://doi.org/10.1111/j.1744-7348.1966.tb03814.x

    Article  CAS  Google Scholar 

  • Maurer AR, Ormrod DP, Fletcher HF (1968) Response of peas to environment IV. Effect of five soil water regimes on growth and development of peas. Can J Plant Sci 48:129–137

    Google Scholar 

  • Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190

    Google Scholar 

  • McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2002) DNA markers for fusarium wilt race 1 resistance gene in pea. J Am Soc Hortic Sci 127:602–607

    CAS  Google Scholar 

  • McDonald GK, Paulsen GM (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196:47–58. https://doi.org/10.1023/A:1004249200050

    Article  CAS  Google Scholar 

  • McGee RJ, Coyne CJ, Pilet Nayel ML, Moussart A, Tivoli B, Baranger A et al (2012) Registration of pea germplasm lines partially resistant to aphanomyces root rot for breeding fresh or freezer pea and dry pea types. J Plant Regist 6:203–207. https://doi.org/10.3198/jpr2011.03.0139crg

    Article  Google Scholar 

  • McPhee K (2003) Dry pea production and breeding – a mini-review. Food Agric Environ 1:64–69

    Google Scholar 

  • McPhee KE, Muehlbauer FJ (2007) Registration of ‘Specter’ winter feed pea. J Plant Regist 1:118–119

    Google Scholar 

  • McPhee KE, Tullu A, Kraft JM, Muehlbauer FJ (1999) Resistance to Fusarium wilt race 2 in the Pisum core collection. J Am Soc Hortic Sci 124:28–31

    Google Scholar 

  • McPhee KE, Inglis, DA, Coyne C J (2004) Linkage map location of Fusarium wilt race 2 (Fnw) in pea. Proceedings of the 5th European Conference on Grain Legumes, June 7–11, 2004, Dijon, France. p. 342

    Google Scholar 

  • McPhee KE, Chen CC, Wichman DM, Muehlbauer FJ (2007) Registration of ‘Windham’ winter feed pea. J Plant Regist 1:117–118

    Google Scholar 

  • McPhee KE, Inglis DA, Gundersen B, Coyne CJ (2012) Mapping QTL for fusarium wilt race 2 partial resistance in pea (Pisum sativum). Plant Breed 131:300–306. https://doi.org/10.1111/j.1439-0523.2011.01938.x

    Article  CAS  Google Scholar 

  • Meng PH, Macquet A, Loudet O, Marion-Poll A, North HM (2008) Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci. Mol Plant 1:145–154. https://doi.org/10.1093/mp/ssm014

    Article  CAS  PubMed  Google Scholar 

  • Menon M, Barnes WJ, Olson MS (2015) Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. New Phytol 207:710–722

    CAS  PubMed  Google Scholar 

  • Meyer DW, Badaruddin M (2001) Frost tolerance of ten seedling legume species at four growth stages. Crop Sci 41:1838–1842

    Google Scholar 

  • Michelmore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33:393–427. https://doi.org/10.1146/annurev.py.33.090195.002141

    Article  CAS  PubMed  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol 60(4):1206–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikić A, Mihailović V, Milić D, Vasiljević S, Katić S, Ćupina B (2006) The role of af, det and le genes in increasing grain yield of feed pea (Pisum sativum L.) in Serbia and Montenegro. Abstracts, 3rd international conference on legume genomics and genetics, Brisbane, p 109

    Google Scholar 

  • Mikić A, Mihailović V, Duc G, Ćupina B, Étévé G, Lejeune-Hénaut I, Mikić V (2007) Evaluation of winter protein pea cultivars in the conditions of Serbia. Zbornik radova Instituta za ratarstvo i povrtarstvo. Novi Sad 44:107–112

    Google Scholar 

  • Mikić A, Mihailović V, Ćupina B, Đorđević V, Milić D, Duc G, Stoddard FL, Lejeune-Hénaut I, Marget P, Hanocq E (2011) Achievements in breeding winter-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 180:57–67

    Google Scholar 

  • Mikič A, Smykal P, Kenicer GJ et al (2013) The bicentenary of the research on ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Bot J Linn Soc 172:524–531

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103. https://doi.org/10.1023/A:1009651919792

    Article  CAS  Google Scholar 

  • Mohan N, Aghora TS, Wani MA, Divya B (2013) Garden pea improvement in India. J Hortic Sci 8(2):125–164

    Google Scholar 

  • Monti L, Frusciante L, Romano R (1993) Problems and prospects of stress resistance breeding in pea. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. Wiley, Chichester, pp 63–73

    Google Scholar 

  • Moran JF, Becana M, Iturbe Ormaetxe I, Frechilla S, Klucas RV, Aparicio Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    CAS  Google Scholar 

  • Moussart A, Devaux C, Muel F, Pilet-Nayel M, Baranger A, Tivoli B et al. (2007). Improving partial resistance to aphanomyces root rot in GSP breeding program. 3rd International aphanomyces workshop on legumes, Rennes, 7–9 Nov 2007

    Google Scholar 

  • Muehlbauer FJ, Kraft KM (1973) Evidence of heritable resistance to Fusarium solani f. sp. pisi and Phythium ultimum in peas. Crop Sci 13:34–36

    Google Scholar 

  • Munier-Jolain, N., Biarnes, V., Chaillet, I. (2010). Physiology of the Pea Crop. Boca Raton: CRC Press, https://doi.org/10.1201/b10504

  • Munjal RL, Chenulu VV, Hora TS (1963) Assesment of losses due to powdery mildew (Erysiphe poygoni) on pea. Indian Phytopathol 19:260–267

    Google Scholar 

  • Narsinghan VG, Singh SP, Pal BS (1980) Note on rust resistant pea varieties. Indian J Agric Sci 50:453

    Google Scholar 

  • Nasiri J, Haghnazari A, Saba J (2009) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.). Afr J Biotechnol 8:3405–3417

    CAS  Google Scholar 

  • Neumann AM, Aremu JA (1991) Drought sensitivity, root development and osmotic adjustment in field grown peas. Irrig Sci 12:45–51

    Google Scholar 

  • Nisar M, Ghafoor A (2011) Linkage of a RAPD marker with powdery mildew resistance er1 gene in Pisum sativum L. Russ J Genet 47:300–304

    CAS  Google Scholar 

  • Nonnecke IL, Adedipe NO, Ormrod DP (1971) Temperature and humidity effects on the growth and yield of pea cultivars. Can J Plant Sci 51:479–484

    Google Scholar 

  • Okubara PA, Inglis DA, Muehlbauer FJ, Coyne CJ (2002) A novel RAPD marker linked to the Fusarium wilt race 5 resistance gene (Fwf) in pisum sativu. Pisum Genet 34:115–120

    Google Scholar 

  • Okubara PA, Keller KE, McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2005) Y15 999Fw, a dominant SCAR marker linked to the Fusarium wilt race 1 (Fw) resistance gene in pea. Pisum Genet 37:30–33

    Google Scholar 

  • Ondřej M, Dostálová R, Odstrčilová L (2005) Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of peas. Plant Prot Sci 41:95–103

    Google Scholar 

  • Oram PA, Agcaoili M (1994) Current status and future trends in supply and demand of cool season food legumes. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Springer, Dordrecht, pp 3–49

    Google Scholar 

  • Oyarzun PJ (1993) Bioassay to assess root rot in pea and effect of root rot on yield. Neth J Plant Pathol 99:61–75

    Google Scholar 

  • Pal AB, Brahmappa Rawal RD, Mllasa BA (1980) Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis 64:1085–1086

    Google Scholar 

  • Papavizas GC, Ayers WA (1974) Aphanomyces species and their root diseases in pea and sugarbeet: a review. Report. Agricultural Research Service, US Department of Agriculture, Washington, D.C.; Sep. Report No.:1485

    Google Scholar 

  • Parihar AK, Dixit GP (2017) ‘Variety central fieldpea IPFD 12-2’ notification of crop varieties and registration of germplasm. Indian J Genet 77(4):584–585

    Google Scholar 

  • Parihar AK, Dixit GP, Chaturvedi SK (2013) Diseases resistance breeding in fieldpea — a review. Prog Res 8(1):1–13

    Google Scholar 

  • Parihar AK, Bohra A, Dixit GP (2016) Nutritional benefits of winter pulses with special emphasis on Peas and Rajmash. In: Singh et al (eds) Biofortifications of food crops. Springer, pp 61–71 https://doi.org/10.1007/978-81-322-2716-8_6

  • Parihar AK, Dixit GP, Singh NP (2019) ‘Variety Fieldpea IPFD 9-2’ Notification of crop varieties and registration of germplasm. Indian J Genet 79(3):639

    Google Scholar 

  • Paul PJN, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR et al (2018) Molecular mapping of QTLs associated with heat tolerance in chickpea. Inter J Mol Sci 19:E2166. https://doi.org/10.3390/ijms19082166

    Article  CAS  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Miacola C, Visser RGF, Bai YL, Lotti C, Ricciardi L (2013) Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed 31:247–253

    CAS  Google Scholar 

  • Pereira G, Leitão J (2010) Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171(3):345–354

    CAS  Google Scholar 

  • Petkova V, Nikolova V, Kalapchieva SH, Stoeva V, Topalova E, Angelova S (2009) Physiological response and pollen viability of Pisum sativum genotypes under high temperature influence. Acta Hortic 830:665–672. https://doi.org/10.17660/ActaHortic.2009.830.96

    Article  Google Scholar 

  • Pfunder M, Roy B (2000) Pollinator-mediated interaction between a pathogenic fungus. Uromyces pisi and its host plant, Euphorbia cyparrissias (Euphorbiaceae). Am J Bot 87:48–55

    CAS  PubMed  Google Scholar 

  • Pilet Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106(1):28–39

    CAS  PubMed  Google Scholar 

  • Pilet Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95:1287–1293. https://doi.org/10.1094/PHYTO-95-1287

    Article  CAS  PubMed  Google Scholar 

  • Pilet Nayel ML, Coyne C, Hamon C, Lesné A, Le Goff I, Esnault R, Lecointe R, Roux-Duparque M, McGee R, Mangin P, McPhee K, Moussart A, Baranger A (2007) Understanding genetics of partial resistance to Aphanomyces root rot in pea for new breeding prospects. 3rd International aphanomyces workshop on legumes, Rennes, 7–9 Nov 2007, p 36

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares J, Villegas J, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. https://doi.org/10.1007/s00122-010-1351-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter LD (2010) Identification of tolerance to Fusarium root rot in wild pea germplasm with high levels of partial resistance. Pisum Genet 42:1–6

    Google Scholar 

  • Porter LD, Kraft JM, Grunwald NJ (2014) Release of pea germplasm with resistance combined with desirable yield and anti-lodging traits. J Plant Regist 8:191–194

    Google Scholar 

  • Porter LD, Pasche JS, Chen W, Harveson RM (2015) Isolation, identification, storage, pathogenicity tests, hosts, and geographic range of Fusarium solani f. Sp. pisi causing fusarium root rot of pea. Plant Health Prog 16(3):136–145

    Google Scholar 

  • Prioul Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    CAS  PubMed  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    CAS  PubMed  Google Scholar 

  • Pumphrey FV, Raming RE (1990) Field responses of peas to excess heat during the reproductive stage of growth. J Am Soc Hortic Sci 115:898–900

    Google Scholar 

  • Pumphrey FV, Ramig RE, Allmaras RR (1979) Field response of peas (Pisum sativum L) to precipitation and excess heat. J Am Soc Hortic Sci 104(4):548–550

    Google Scholar 

  • Pumphrey FV, Schwanke RK (1974) Effects of irrigation on growth, yield, and quality of peas for processing. J Am Soc Hortic Sci 100:507–509

    Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    PubMed  Google Scholar 

  • Rai R, Singh, AK, Chand R, Srivastava CP, Joshi AK, Singh BD (2016) Genomic regions controlling components of resistance for pea rust caused by Uromyces fabae (Pers.) de-Bary. J Plant Biochem Biotechnol 25:133–141. https://doi.org/10.1007/s13562-015-0318-6

  • Rakshit S, Mohapatra T, Mishra SK, Dasgupta SK, Sharma RP, Sharma B (2001) Marker assisted selection for powdery mildew resistance in pea (Pisum sativum L.). Indian J Genet Plant Breed 55:343–348

    CAS  Google Scholar 

  • Rana JC, Banyal DK, Sharma KD, Sharma Manish K, Gupta SK, Yadav SK (2013) Screening of pea germplasm for resistance to powdery mildew. Euphytica 189:271–282

    CAS  Google Scholar 

  • Ranalli P (2003) Breeding methodologies for the improvement of grain legumes. In: Jaiwal PK, Singh RP (eds) Improvement strategy of leguminosae biotechnology. Kluwer Academic Publisher, Dordrecht, pp 3–21

    Google Scholar 

  • Read JJ, Johnson RC, Carver BF, Quarri SA (1991) Carbon isotope discrimination, gas exchange and yield of spring wheat selected for abscisic acid content. Crop Sci 31:139–146

    CAS  Google Scholar 

  • Reichert RD, MacKenzie SL (1982) Composition of peas (Pisum sativum) varying widely in protein content. J Agric Food Chem 30:312–317

    CAS  Google Scholar 

  • Reiling TP (1984) Powdery mildew. In: Hagedorn DJ (ed) Compendium of pea diseases. APS, St. Paul, pp 21–22

    Google Scholar 

  • Ridge PE, Pye DL (1985) The effects of temperature and frost at flowering on the yield of peas grown in a Mediterranean environment. Field Crop Res 12:339–346

    Google Scholar 

  • Rispail N, Rubiales D (2014) Identification of sources of quantitative resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. Plant Dis 98:667–673. https://doi.org/10.1094/pdis-03-13-0217-re

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez Maribona B, Tenorio JL, Conde JR, Ayerbe L (1990) Physiological characteristics responsible for drought resistance in different pea cultivars. In: El Bassam N, Dambroth M, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 137–143

    Google Scholar 

  • Rodriguez Maribona B, Tenorio JL, Conde JR, Ayerbe L (1992) Correlation between yield and osmotic adjustment of peas (Pisum sativum L.) under drought stress. Field Crop Res 29:15–22

    Google Scholar 

  • Roncero MIG, Hera C, Ruiz R, Garcia Maceira FI, Madrid MP, Caracuel Z et al (2003) Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol 62:87–98. https://doi.org/10.1016/s0885-5765(03)00043-2

    Article  Google Scholar 

  • Ross JJ, Reid JB (1991) Internode length in Pisum: le5839 is a less severe allele than Mendel’s le. Pisum Genet 23:29–34

    Google Scholar 

  • Roux-Duparque M, Boitel C, Decaux B, Moussart A, Alamie J, Pilet-Nayel ML, Muel F (2004) Breeding peas for resitance to Aphanomyces root rot : current main outputs of three breeding programmes. In: Proceedings of the 5th European conference on grain legumes, 7–11 June 2004, Dijon, France, p 133

    Google Scholar 

  • Ross JJ, Reid JB, Gaskin P, MacMillan J (1989) Internode length in Pisum: estimation of GA1 levels in genotypes Le, le and led. Physiol Plant 76:173–176

    CAS  Google Scholar 

  • Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27. https://doi.org/10.3389/fpls.2012.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubiales D, Ambrose MJ, Domoney C, Burstin J (2011) Pea (Pisum sativum L.). In: de la Vega MP, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes (genetics, genomics and breeding in crop plants). Science Publisher, Enfield, pp 1–49

    Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA, Singh KB, Rispail N (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34(1–3):195–236. https://doi.org/10.1080/07352689.2014.898445

    Article  CAS  Google Scholar 

  • Rubiales D, González Bernal MJ, Warkentin T, Bueckert T, Vaz Patto MC, McPhee K, McGee R, Smýkal P (2019) Advances in pea breeding. In: Hochmuth G (ed) Achieving sustainable cultivation of vegetables. Burleigh Dodds Science Publishing, Cambridge, ISBN: 9781786762368; www.bdspublishing.com. https://doi.org/10.19103/AS.2019.0045.28

    Chapter  Google Scholar 

  • Sadras VO, Lake L, Chenu K, McMurray LS, Leonforte A (2012) Water and thermal regimes for field pea in Australia and their implications for breeding. Crop Pasture Sci 63(1):33–44. https://doi.org/10.1071/CP11321

    Article  Google Scholar 

  • Sadras VO, Lake L, Leonforte A, McMurray LS, Paull JG (2013) Screening field pea for adaptation to water and heat stress: associations between yield, crop growth rate and seed abortion. Field Crops Res 150:63–73. https://doi.org/10.1016/j.fcr.2013.05.023

    Article  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010) Identification of markers associated with genes for rust resistance in Lens culinaris Medik Euphytica 175:261–265 

    Google Scholar 

  • Salter PJ (1962) Some responses of peas to irrigation at different growth stages. J Hortic Sci 37:141–149

    Google Scholar 

  • Salter PJ (1963) The effect of wet or dry soil conditions at different growth stages on the components of yield of a pea crop. J Hortic Sci 38:321–334

    Google Scholar 

  • Sánchez FJ, Manzanares M, de Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59(3):225–235

    Google Scholar 

  • Sánchez FJ, Manzanares M, De Andrés EF, Tenorio JL, Ayerbe L (2001) Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions: influence on harvest index and canopy temperature. Eur J Agron 15(1):57–70. https://doi.org/10.1016/S1161-0301(01)00094-6

    Article  Google Scholar 

  • Sanchez FJ, de Andres EF, Tenorio JL, Ayerbe L (2004) Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Res 86:81–90

    Google Scholar 

  • Sarala K (1993) Ph.D Thesis. Indian Agric. Res. Inst., New Delhi: 138

    Google Scholar 

  • Saxena JK, Tripathi RM, Srivastava RL (1975) Powdery mildew resistance in pea (Pisum satium L.). Curr Sci 44:746

    Google Scholar 

  • Semere T, Froud Williams RJ (2001) The effect of pea cultivar and water stress on root and shoot competition between vegetative plants of maize and pea. J Appl Ecol 38:137–145

    Google Scholar 

  • Shafiq S, Mather DE, Ahmad M, Paull JG (2012) Variation in tolerance to radiant frost at reproductive stages in field pea germplasm. Euphytica 186(3):831–845. https://doi.org/10.1007/s10681-012-0625-0

    Article  CAS  Google Scholar 

  • Sharma B (2003) The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet 35:22–27

    Google Scholar 

  • Sharma B, Yadav Y (2003) Pisum fulvum carries a recessive gene for powdery mildew resistance. Pisum Genet 35:31

    Google Scholar 

  • Sharma A, Rathour R, Plaha P, Katoch V, Khalsa GS, Patial V, Singh Y, Pathania NK (2010) Induction of Fusarium wilt (Fusarium oxysporum f.sp. pisi) resistance in garden pea using induced mutagenesis and in vitro selection techniques. Euphytica 173:345–356

    Google Scholar 

  • Siddique K (1999) Abiotic stresses of cool season pulses in Australia. Agriculture Western Australia, Centre for Legumes in Mediterranean Agric., and Univ. of Western Australia, Perth

    Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241. https://doi.org/10.1007/s00122-014-2375-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ram H (2001) Inheritance of days to flowering and rust resistance in peas. Res Crops 2:414–418

    Google Scholar 

  • Singh RM, Srivastava CP (1985) Evaluation classification and usefulness of pea germplasm for quantitative characters. Legume Res 8:68–73

    Google Scholar 

  • Singh AK, Srivastava CP (2018) Effect of plant types on grain yield and lodging resistance in pea (Pisum sativum L.). Indian J Genet 75(1):69–74. https://doi.org/10.5958/0975-6906.2015.00008.5

    Article  Google Scholar 

  • Singh L, Narsinghani VG, Kotasthane SR, Tiwari AS (1978) Yield losses caused by powdery mildew in different varieties of peas. Indian J Agric Sci 48:86–88

    Google Scholar 

  • Singh RA, De RK, Chaudhary RG (2004) Influences of spray time of mancozeb on pea rust caused by Uromyces viciae-fabae. Indian J Agric Sci 74:502–504

    Google Scholar 

  • Singh AK, Rai R, Srivastava CP, Singh BD, Kushwaha C, Chand R (2012) A quantitative analysis of rust (Uromyces fabae) resistance in pea (Pisum sativum) using RILs. Indian J Agric Sci 82:190–192

    Google Scholar 

  • Singh J, Nadarajan N, Basu PS et al (2013) Pulses for human health and nutrition. Technical bulletin. IIPR, Kanpur

    Google Scholar 

  • Singh AK, Rai R, Singh BD, Chand R, Srivastava CP (2015) Validation of SSR markers associated with rust (Uromyces fabae) resistance in pea (Pisum sativum L.). Physiol Mol Biol Plants 21(2):243–247. https://doi.org/10.1007/s12298-015-0280-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Babu S, Avasthe RK, Singh A, Yadav GS, Pashte V, Singh JK (2018) Screening of field pea varieties for rice-fallow areas under organic management conditions in NE Himalayas. Ann Agric Res 39(3):246–250

    Google Scholar 

  • Sivachandra Kumar NT, Banniza S (2017) Assessment of the effect of seed infection with Ascochyta pisi on pea in Western Canada. Front Plant Sci 8:933. https://doi.org/10.3389/fpls.2017.00933

    Article  PubMed  PubMed Central  Google Scholar 

  • Skovgaard K, Bodker L, Rosendahl S (2002) Population structure and pathogenicity of members of the Fusarium oxysporum complex isolated from soil and root necrosis of pea (Pisum sativum L.). FEMS Microbiol Ecol 42:367–374

    CAS  PubMed  Google Scholar 

  • Slavin JL (2008) Position of the American dietetic association: health implications of dietary fiber. J Am Diet Assoc 108:1716–1731

    PubMed  Google Scholar 

  • Smith PH, Foster EM, Boyd LA, Brown JKM (1996) The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol 45:302–309

    Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resourc 9:4–18

    Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P et al (2012) Pea (Pisum sativum L.) in the genomics era: review. Agronomy 2:74–115. https://doi.org/10.3390/agronomy2020074

    Article  Google Scholar 

  • Smýkal P, Coyne C, Redden R, Maxted N (2013) Peas. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and Genomic Resources of Grain Legume Improvement. Elsevier, Amsterdam, The Netherlands, pp. 41–80

    Google Scholar 

  • Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351. https://doi.org/10.3389/fpls.2014.00351

    Article  PubMed  PubMed Central  Google Scholar 

  • Smýkal P, Hradilová I, Trněný O, Brus J, Rathore A, Bariotakis M, Das RR, Bhattacharyya D, Richards C, Coyne CJ et al (2017) Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci Rep 7(1):17384. https://doi.org/10.1038/s41598-017-17623-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smýkal P, Nelson MN, Berger JD, Wettberg EJB (2018) The impact of genetic changes during crop domestication. Agronomy 8(7):119. https://doi.org/10.3390/agronomy8070119

    Article  Google Scholar 

  • Sorensen JN, Edelenbos M, Wienberg L (2003) Drought effects on green pea texture and related physical-chemical properties at comparable maturity. J Am Soc Hortic Sci 128:128–135

    CAS  Google Scholar 

  • Sousa Majer MJD, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJ (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55(396):497–505

    PubMed  Google Scholar 

  • Srivastava RK, Mishra SK, Singh AK, Mohapatra T (2012) Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’in pea (Pisum sativum L.). Euphytica 186:855–866

    Google Scholar 

  • Stanfield B, Ormrod DP, Fletcher HF (1966) Response of peas to environment. II. Effects of temperature in controlled-environment cabinets. Can J Plant Sci 46:195–203

    Google Scholar 

  • Steer TE (2006) Phytochemicals – a future in functional foods? Food Sci Technol Bull 3:23–29

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Google Scholar 

  • Sudheesh S, Lombardi M, Leonforte A, Cogan NOI, Materne M, Forster JW et al (2014) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol Biol Report 33:1391–1403. https://doi.org/10.1007/s11105-014-0837-7

    Article  CAS  Google Scholar 

  • Sun S, Wang Z, Fu H, Duan C, Wang X, Zhu Z (2015) Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. The Crop Journal 3(6):489–499

    Google Scholar 

  • Sun S, Fu H, Wang Z, Duan C, Zong X, Zhu Z (2016) Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS One 11(1):e0147624. https://doi.org/10.1371/journal.pone.0147624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Deng D, Duan C, Zong X, Xu D, He Y, Zhu Z (2019) Two novel er1 alleles conferring powdery mildew (Erysiphe pisi) resistance identified in a worldwide collection of pea (Pisum sativum L.) germplasms. Int J Mol Sci 20:5071. https://doi.org/10.3390/ijms20205071

    Article  CAS  PubMed Central  Google Scholar 

  • Suseela V, Tharayil N (2018) Decoupling the direct and indirect effects of climate on plant litter decomposition: accounting for stressinduced modifications in plant chemistry. Glob Chang Biol 24:1428–1451

    PubMed  Google Scholar 

  • Swensen JB, Murray GA (1983) Cold acclimation of field pea in a controlled environment. Crop Sci 23:27–30

    Google Scholar 

  • Tafesse EG (2018) Heat stress resistance in field pea (Pisum sativum L.) based on canopy and leaf traits. Ph.D. thesis, University of Saskatchewan, Saskatoon

    Google Scholar 

  • Taran B, Warkentin T, Somers D, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Identification of quantitative trait loci for plant height, lodging resistance and reaction to mycosphaerella blight in pea (Pisum sativum L.) using an AFLP-based linkage map. Theor Appl Genet 107:1482–1491

    CAS  Google Scholar 

  • Tariq M, Ahmed I, Qureshi HK, Aslam M (1983) Estimation of yield losses due to powdery mildew in peas. Pak J Bot 15:113–115

    Google Scholar 

  • Tayeh N, Aubert G, Pilet Nayel ML, Lejeune Hénaut I, Warkentin TD, Burstin J (2015) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037. https://doi.org/10.3389/fpls.2015.01037

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorup Kristensen K (1998) Root growth of green pea (Pisum sativum L.) genotypes. Crop Sci 38(6):1445–1451. https://doi.org/10.2135/cropsci1998.0011183X003800060007x

    Article  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Weeden NF (1994) Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C). Theor Appl Genet 88:1050–1055

    Google Scholar 

  • Timmerman Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of Ascochyta blight of peas. Crop Sci 42:2100–2111

    CAS  Google Scholar 

  • Timmerman Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell A, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    CAS  PubMed  Google Scholar 

  • Timmerman Vaughan GM, Moya L, Frew TJ, Murray SR, Crowhurst R (2016) Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. Theor Appl Genet 129(5):879–896. https://doi.org/10.1007/s00122-016-2669-3

    Article  CAS  PubMed  Google Scholar 

  • Tivoli B, Banniza S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. Eur J Plant Pathol 119:59–76. https://doi.org/10.1007/s10658-007-9117-9

    Article  Google Scholar 

  • Tivoli B, Béasse C, Lemarchand E, Masson E (1996) Effect of ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum) plants under field conditions. Ann Appl Biol 129:207–216. https://doi.org/10.1111/j.1744-7348.1996.tb05745.x

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er1 in pea. Genome 41:440–444

    CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for powdery mildew resistance gene er2 in pea. Pisum Genetics 31:27–29

    Google Scholar 

  • Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P et al (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:632–636. https://doi.org/10.1038/nature09083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonguc M, Weeden NF (2010) Identification and mapping of molecular markers linked to er1 gene in pea. Plant Mol Biol Biotechnol 1:1–5

    Google Scholar 

  • Tosh SM, Yada S (2010) Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res Int 43:450–460

    CAS  Google Scholar 

  • Tran HS, You MP, Lanoiselet V, Khan TN, Barbetti MJ (2014) First report of Phoma glomerata associated with the ascochyta blight complex on field pea (Pisum sativum) in Australia. Plant Dis 98:427. https://doi.org/10.1094/PDIS-08-13-0809-PDN

    Article  CAS  PubMed  Google Scholar 

  • Trněný O, Brus J, Hradilová I, Rathore A, Das RR, Kopecký P, Coyne CJ, Reeves P, Richards C, Smýkal P (2018) Molecular evidence for two domestication events in the pea crop. Genes 9(11):535. https://doi.org/10.3390/genes9110535

    Article  CAS  PubMed Central  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011. https://doi.org/10.1007/s001220050654

    Article  CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:193–231. https://doi.org/10.1016/S0065-2113(01)71015-2

    Article  Google Scholar 

  • Tyagi MK, Srivastava CP (1999) Inheritance of powdery mildew and rust resistance in pea. Ann Biol 15:13–16

    Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC et al (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44. https://doi.org/10.1007/s13593-011-0020-6

    Article  Google Scholar 

  • Vasileva M, Ancheva M, Vassileva M (1980) Genetical and biochemical analysis of stem mutants of pea. Genet Sel 13(1):3–18

    CAS  Google Scholar 

  • Vijayalakshmi S, Yadav K, Kushwaha C, Sarode SB, Srivastava CP, Chand R, Singh BD (2005) Identification of RAPD markers linked to the rust (Uromyces fabae) resistance gene in pea (Pisum sativum). Euphytica 144:265–274

    CAS  Google Scholar 

  • Vijaylaxmi (2013) Effect of high temperature on growth, biomass and yield of field pea genotypes. Legume Research 36:250–254

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wallen VR (1955) The effect of storage for several years on the viability of Ascochyta pisi in pea seed and on the germination of the seed and emergence. Plant Dis Rep 39:674–677

    Google Scholar 

  • Wallen VR (1965) Field evaluation and the importance of the ascochyta complex on peas. Can J Plant Sci 5:27–33. https://doi.org/10.4141/cjps65-004

    Article  Google Scholar 

  • Wallen VR (1974) Influence of three ascochyta diseases of peas on plant development and yield. Can Plant Dis Surv 54:86–90

    Google Scholar 

  • Wang FB, Fu JF, Dong LF (2002) Study on tendril inheritance of semi-leafless pea and its application to pea breeding. J Hebei Vocationtech Teach Coll 16:6–8

    CAS  Google Scholar 

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    CAS  Google Scholar 

  • Warkentin T, Taran B, Vandenberg A (2001a) Implementation of marker-assisted selection for lodging resistance in pea breeding. Agriculture Development Fund Project Application

    Google Scholar 

  • Warkentin T, Vandenberg A, Banniza S, Chongo G, Tullu A, Tar’an B, Lulsdorf M (2001b) Pulse crop variety development strategies in Saskatchewan. Saskatchewan Pulse Growers Pulse Days (2002), Saskatoon

    Google Scholar 

  • Warkentin TD, Smykal P, Coyne CJ, Weeden N, Domoney C, Bing D, Leonforte A, Xuxiao Z, Dixit G, Boros L et al (2015) Pea (Pisum sativum L.). In: De Ron AM (ed) Grain legumes. Series Handbook of plant breeding. Springer Science Business Media, New York, pp 37–83

    Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407. https://doi.org/10.1534/genetics.110.125062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeden NF, Porter L (2007) The genetic basis of Fusarium root rot tolerance in the ‘Afghanistan’ pea. Pisum Genet 39:35–36

    Google Scholar 

  • Weeden NF, McGee R, Grau CR, Muehlbauer FJ (2000) A gene influencing tolerance to common root rot is located on linkage group IV. Pisum Genet 32:53–55

    Google Scholar 

  • Weller JL, Liew LC, Hecht VFG, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Henaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158–21163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker E, Rouxel F (2001) Specific behaviour of French Aphanomyces euteiches Drechs. Populations for virulence and aggressiveness on pea, related to isolates from Europe, America and New-Zealand. Eur J Plant Pathol 107:919–929

    Google Scholar 

  • Wicker E, Moussart A, Duparque M, Rouxel F (2003) Further contributions to the development of a differential set of pea cultivars (Pisum sativum) to investigate the virulence of isolates of Aphanomyces euteiches. Eur J Plant Pathol 109:47–60

    CAS  Google Scholar 

  • Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta blight resistance in pea. Aust J Exp Agric 38:469–479. https://doi.org/10.1071/EA98024

    Article  Google Scholar 

  • Wu L, Chang KF, Conner RL, Strelkov S, Fredua Agyeman R, Hwang SF, Feindel D (2018) Aphanomyces euteiches: a threat to Canadian field pea production. Engineering 4:542–551. https://doi.org/10.1016/j.eng.2018.07.006

    Article  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Xue AG (2000) Effect of seed-borne Mycosphaerella pinodes and seed treatments on emergence, foot rot severity, and yield of field pea. Can J Plant Pathol 22:248–253. https://doi.org/10.1080/0706066000950047

    Article  Google Scholar 

  • Xue AG, Warkentin TD (2001) Partial resistance to Mycosphaerella pinodes in field pea. Can J Plant Sci 81:535–540

    Google Scholar 

  • Xue AG, Warkentin TD, Kenaschuk EO (1996) Mycosphaerella blight of field pea-potential damage and fungicide control. In: Proceedings of Manitoba agri-forum, Winnipeg, pp 5–6

    Google Scholar 

  • Xue AG, Warkentin TD, Kenaschuk EO (1997) Effects of timing of inoculation with Mycosphaerella pinodes on yield and seed infection of field pea. Can J Plant Sci 78:685–690. https://doi.org/10.4141/P96-150

    Article  Google Scholar 

  • Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delaviña CB, Diaz GQ (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    CAS  Google Scholar 

  • Zain ZM, Gallagher JN, White JGH (1983) The effect of irrigation on radiation absorption, water use and yield of conventional and semi-leafless peas. Proc Agron Soc N Z 20:95–102

    Google Scholar 

  • Zaumeyer WJ, Thomas HR (1957) Bean diseases and methods for their control. U.S. Dept Agric Tech Bull 868:255–260

    Google Scholar 

  • Zhang R, Hwang SF, Chang KF, Gossen BD, Strelkov SE, Turnbull GD et al (2006) Genetic resistance to Ascochyta pinodes in 558 field pea accessions. Crop Sci 46:2409–2414. https://doi.org/10.2135/cropsci2006.02.0089

    Article  Google Scholar 

  • Zhang XY, Wan SW, Hao JJ, Hu JG, Yang T, Zong XX (2016) Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop J 4:377–383

    Google Scholar 

  • Zimmer MC, Sabourin D (1986) Determining resistance reaction of field pea cultivars at the seedling stage to Mycosphaerella pinodes. Phytopathology 76:878–881. https://doi.org/10.1094/Phyto-76-878

    Article  Google Scholar 

  • Zinn KE, Tunc Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. https://doi.org/10.1093/jxb/erq053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

  • Zvirin T, Herman R, Brotman Y, Denisov Y, Belausov E, Freeman S et al (2010) Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1.2. Plant Pathol 59:576–585. https://doi.org/10.1111/j.1365-3059.2009.02225.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parihar, A.K. et al. (2020). Genetic Advancement in Dry Pea (Pisum sativum L.): Retrospect and Prospect. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_10

Download citation

Publish with us

Policies and ethics