Skip to main content

Efficient Methods for the Improvement of Temperate Root Vegetables

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Root vegetables are mainstay of human diet. The important commercial crops grown under this group are carrot, radish, turnip, and beetroot. The less important root crops include parsnip, rutabaga, chervil, etc. All these crops are direct sown and thrive best in cool season. Most of these crops belong to different botanical families but require similar cultural practices. All these crops are grown almost round the year in different parts of the globe. Due to their short duration and high productivity, root crops fit well in sequential, inter-, and relay cropping, which enable maximum use of arable land. These are highly efficient in producing the highest amount of nutrients and health-promoting substances per unit area. From seed production point of view, temperate-type cultivars of these crops require vernalization/chilling at a particular stage for the transformation from vegetative to different reproductive stages, viz., initiation of seed stalks, flowering, and seed setting. These crops are also commonly known as temperate or European or biennial vegetables. The temperate root vegetables are occupying a significant position.

Presently, the breeding efforts in root crops are toward development of hybrids/varieties for consumer-oriented futuristic traits such as high yielding; uniformity in shape, size, and color; free from defects (splitting, cracking, forking, greening and fanging); resistant to various biotic and abiotic stresses; and rich in phytochemical, antioxidants, and dietary minerals. Hybrid breeding offers a chance of combining various horticultural traits and different sources of resistance. Recently, hybrid varieties have demonstrated good uniformity of roots, a quality accepted by most consumers. By contrast, only a few resistant varieties (mainly open-pollinated varieties) are offered by seed companies, most being resistant to some important diseases. Efforts in future breeding should concentrate on the improvement of health with a higher nutritional content need to be developed to ensure global access to a secure and balanced diet and the development of genotypes suitable for cultivation in suboptimal climates and regions, as well as productive cultivars and hybrids of root crops suitable for cultivation round the year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aazami MA, Hassanpouraghdam MB (2009) The effects of different culture media on the callus production of radish (Raphanus sativus L.). Rom Biotechnol Lett 14(4):4519–4523

    CAS  Google Scholar 

  • Akhramenka GD (1988) Cytological and biochemical characteristics of polyploid forms of beetroot. Vestsi Akademii Navuk BSSR, Biyalagichnykh Navuk 5:33

    Google Scholar 

  • Akhramenka GD, Kazyrevich TP (1989) Effect of backcrosses on alteration of characters in recombinant forms of tetraploid beetroot. Vestsi Akademii Navuk BSSR, Biyalagichnykh Navuk 1:20

    Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Ammirato PV (1986) Carrot. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 4. Macmillan, New York, pp 457–499

    Google Scholar 

  • Ammitzboll H, Jorgensen RB (2006) Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus. Environ Biosaf Res 5(1):3–13

    Google Scholar 

  • Avesani L, Falorni A, Tornielli GB, Marusic C, Porceddu A, Polverari A, Faleri C, Calcinaro F, Pezzotti M (2003) Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res 12:203–212

    CAS  PubMed  Google Scholar 

  • Aviv D, Amsellem Z, Gressel J (2002) Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Pest Manag Sci 58:1187–1193

    CAS  PubMed  Google Scholar 

  • Bach IC, Olesen A, Simon PW (2002) PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365. https://doi.org/10.1023/A:1020314802236

    Article  CAS  Google Scholar 

  • Bailey LH (1965) The Standard encyclopedia of horticulture Bailey Volume (1,2 &3):3403–3404

    Google Scholar 

  • Banga O (1976) Radish (Raphanus sativus L.). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 60–62

    Google Scholar 

  • Banga O, de Bruyn JW, van Bennekom JL, van Keulen HA (1958) Selection of carrots for carotene content. Euphytica 7:247–256

    CAS  Google Scholar 

  • Banga O, Petiet J, van Bennekom JL (1964) Genetical analysis of male-sterility in carrots (L.). Euphytica 13:75–93. https://doi.org/10.1007/BF00037521

    Article  Google Scholar 

  • Baranski R, Grzebelus D, Frese L (2001) Estimation of genetic diversity in a collection of the garden. Euphytica 122:19–29

    CAS  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2007) Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence microbial factor (MF3) gene. Physiol Mol Plant Pathol 71:88–95

    CAS  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    CAS  Google Scholar 

  • Bienz DR (1968) Evidence for carrot splitting as an inherited tendency. Proc Am Soc Hortic Sci 93:429–433

    Google Scholar 

  • Bliss FA (1965) Inheritance of male sterility in table beets (Beta vulgaris L.). Diss Abstr 25:6901

    Google Scholar 

  • Bonnet A (1985) Breeding of carrot male sterile lines and F1 and three-way hybrids creation. In: Eucarpia – Breeding of root crops, pp 30–37

    Google Scholar 

  • Börner T, Linke B, Nothnagel T, Scheike R, Schulz B, Steinborn R, Brennicke A, Stein M, Wricke G (1995) Inheritance of nuclear and cytoplasmic factors affecting male sterility in Daucus carota L. In: Kück U, Wricke G (eds) Genetic mechanisms for hybrid breeding. Blackwell Wissenschafts- Verlag, Berlin, pp 111–122

    Google Scholar 

  • Bouche FB, Marquet-Blouin E, Yanagi Y, Steinmetz A, Muller CP (2003) Neutralising immunogenicity of a polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine 21:2065–2072

    CAS  PubMed  Google Scholar 

  • Bouche FB, Steinmetz A, Yanagi Y, Muller CP (2005) Induction of broadly neutralizing antibodies against measles virus mutants using a polyepitope vaccine strategy. Vaccine 23:2074–2077

    CAS  PubMed  Google Scholar 

  • Briggs WH, Goldman IL (2006) Genetic variation and selection response in model breeding populations of Brassica rapa following a diversity bottleneck. Genetics 172(1):457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broglie K, Chet I, Holliday M (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    CAS  PubMed  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324(6):543–550. https://doi.org/10.1016/S0764-4469(01)01324-5

    Article  CAS  PubMed  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (L.). Euphytica 28:611–632

    CAS  Google Scholar 

  • Bundessortenamt (1986) Beschreibende Sortenliste: wurzelgemuse, Zweibelgemuse, Kohlgemuse, Hulsenfruchte

    Google Scholar 

  • Bundessortenamt (2001) Beschreibende Sortenliste: wurzelgemuse, Zweibelgemuse, Kohlgemuse, Hulsenfruchte

    Google Scholar 

  • Burkill IH (1935) A dictionary of the economic products of the Malay Peninsula. Crown Agents, London

    Google Scholar 

  • Buzza GC (1995) Plant breeding. In: Kimber DS, DI MG (eds) Brassica oil seeds, production and utilization. CAB International, Wallingford, pp 153–175

    Google Scholar 

  • Chen WP, Punja ZK (2002) Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Rep 20:929–935

    CAS  Google Scholar 

  • Cheng D, Fenjiao Z, Liwang L, Xu L, Yinglong C, Wang X, Cecilia L, Yu R, Yiqin G (2013) TRAP markers generated with resistant gene analog sequences and their application to genetic diversity analysis of radish germplasm. Sci Hortic 161:153–159

    CAS  Google Scholar 

  • Choudhary B (1967) Vegetables. National Book Trust India, New Delhi

    Google Scholar 

  • Curtis Ian S (2003) The noble radish: past, present and future. Trends Plant Sci 8(7):305–307

    CAS  PubMed  Google Scholar 

  • Davey VMM (1931) Colour inheritance in swedes and turnips and its bearing on the identification of commercial stocks. Scott J Agric 14:303

    Google Scholar 

  • Davey JC (1999) Deploying male-sterility as a grouping character in carrot distinctness, uniformity and stability trials. In: Proceedings of the third international symposium on the taxonomy of cultivated plants. Edinburgh, 20–26 July 1998, pp 431–433

    Google Scholar 

  • Dickson MH (1966) The inheritance of longitudinal cracking in carrots. Euphytica 15:99–101

    Google Scholar 

  • Donald I (2012) Beetroot stand management. Final Report HAL Project VG 06117

    Google Scholar 

  • Dowker BD, Jackson JC (1977) Variation studies in carrots as an aid to breeding. The effects of environments within a site on the performance of carrot cultivars. J Hortic Sci 52:299–307

    Google Scholar 

  • Downey RK, Klaasen AJ, Stringham GR (1980) Rapeseed and mustard. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Crop Science Society of America, Madison, pp 495–509

    Google Scholar 

  • Droge W, Broer I, Puhler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142–151

    CAS  PubMed  Google Scholar 

  • Droge-Laser W, Siemeling U, Puhler A, Broer I (1994) The metabolites of the herbicide L-phosphinothricin (glufosinate)-identification, stability, and mobility in transgenic, herbicide- resistant, and untransformed plants. Plant Physiol 105:159–166

    PubMed  PubMed Central  Google Scholar 

  • Erickson EH, Garment MB, Peterson CE (1982) Structure of cytoplasmic male-sterile and fertile carrot flowers. J Am Soc Hortic Sci 107(4):698–706

    Google Scholar 

  • Falk KC, Woods DL (2003) Seed yield of successive synthetic generations in summer turnip rape. Can J Plant Sci 83(2):271–274. https://doi.org/10.4141/P01-182

    Article  Google Scholar 

  • Frandsen KJ (1941) Contribution to the cytogenetics of Brassica napus L., Brassica campestris L., and their hybrid the amphidiploid Brassica napocampestris. Arsskr K Vet Landobhojsk 1941:59

    Google Scholar 

  • Frandsen KJ, Winge O (1932) Brassica napocampestris, a new constant amphidiploid species hybrid. Hereditas 16:212

    Google Scholar 

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Am Soc Hortic Sci 108:50–54

    Google Scholar 

  • Frimmel F (1938) Karottenzuchtung. Zuchter 10:181–185

    Google Scholar 

  • Frison EA, Serwinski J (1995) Directory of European institutions holding crop genetic resource collection. IPGRI, Rome

    Google Scholar 

  • Gabelman WH (1974) F1 hybrids in vegetable production. In: Antoszwski R, Harrison L, Nowosielski J (eds) Proceedings of XIX international horticultural congress, vol III, Warsaw, 11–18 Sept 1974, 419 ISHS, Wageningen

    Google Scholar 

  • Girod PA, Zryd JP (1987) Clonal variability and light induction of betalain synthesis in red beet cell cultures. Plant Cell Rep 6:27

    CAS  PubMed  Google Scholar 

  • Gopalan C, Ram Sastri BV, Balasubramanium SC (1971) Nutritative value of Indian food. National Institute of Nutrition, Hyderabad

    Google Scholar 

  • Gupta SK (1997) Production of interspecific and intergeneric hybrids in Brassica and Raphanus. Cruciferae Newsletter Eucarpia 19:21–22

    Google Scholar 

  • Hammer K, Stanarius A, Kuhne T (1990) Differential occurrence of beet cryptic viruses-a new tool for germplasm characterization and evolutionary studies in beet. Euphtytica 45:23

    Google Scholar 

  • Hansche PE, Gabelman WH (1963) Digenic control of male sterility in carrots (Daucus carota L.). Crop Sci 3:383–386

    Google Scholar 

  • Harberd DJ (1969) A simple effective embryo culture technique for Brassica. Euphytica 18:425

    Google Scholar 

  • Hauser TP, Jorgensen R, Ostergard H (1997) Preferential exclusion of hybrids in mixed pollination between oil seed rape (Brassica napus) and weedy Brassica campestris (Brassicaceae). Am J Bot 84:756–762

    CAS  PubMed  Google Scholar 

  • Hayward H (1938) The structure of economic plants. The MacMillan Company, New York

    Google Scholar 

  • Hoen K (1968) Heritability and genetic correlations in turnips (Brassica campestris L. var. rapa). Euphytica 17(3):352–356

    Google Scholar 

  • Hofer R, Gennari D (1994) HPTLC -Methode zur quatitativen Zuckerbestimmung in Mohren (Dcnicus carota L.). Vortr Pflanzenzuchtg 28:318–320

    Google Scholar 

  • Holland H (1957) Classification and performance of varieties of red beet. Rep Natl Veg Res Stn for 1956, 16

    Google Scholar 

  • Hoppe HA (1981) Taschenbuch der Drogenkunde. De Gruyter, Berlin/New York

    Google Scholar 

  • Huang B et al (2002) Production and cytogenetics of intergeneric hybrids between Ogura CMS Brassica napus and Raphanus raphanistrum. Cruciferae Newsletter Eucarpia 24:25–27

    CAS  Google Scholar 

  • Iman MK, Gabelman WH (1968) Inheritance of carotenoids in carrots (Daucus carota L.). Proc Am Soc Hortic Sci 93:419–428

    Google Scholar 

  • Imani J, Berting A, Nitsche S, Schaefer S, Gerlich WH, Neumann KH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tissue Org Cult 71:157–164

    CAS  Google Scholar 

  • Jayaraj J, Punja Z (2008) Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46:875–883

    CAS  PubMed  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    CAS  PubMed  Google Scholar 

  • Jeong YM, Kim N, Ahn BO, Oh M, Chung WH, Chung H, Jeong S, Lim KB, Hwang YJ, Kim GB, Baek S, Choi SB, Hyung DJ, Lee SW, Sohn SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372

    CAS  PubMed  Google Scholar 

  • Jorgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. J Bot 81:1620–1626

    Google Scholar 

  • Jung WY, Park HJ, Lee A, Lee SS, Kim YS, Cho HS (2016) Identification of flowering-related genes responsible for differences in bolting time between two radish inbred lines. Front Plant Sci 7:1844

    PubMed  PubMed Central  Google Scholar 

  • Kalloo G, Bergh BO (1993) Genetic improvement of vegetable crops. Pergamon Press, Oxford

    Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol 25:1163–1168

    Google Scholar 

  • Kaneko Y, Matsuzawa Y (1993) Radish (Raphanus sativus L.). In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp 487–505

    Google Scholar 

  • Kightley SPJ (1999) The introduction of oilseed rape hybrids in the United Kingdom. GCIRC Bull 16:74–79

    Google Scholar 

  • Kitagawa J, Gerrath JM, Posluszny U, Wolyn DJ (1994) Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sex Plant Reprod 7:41–50. https://doi.org/10.1007/BF00241886

    Article  Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitto SL, Janick J (1985) Production of synthetic seeds by encapsulating asexual embryos of carrot. J Am Soc Hortic Sci 110:277–282

    Google Scholar 

  • Kohzuma K, Chiba M, Nagano S, Anai T, Ueda MU, Oguchi R, Shirai K, Hanada K, Hikosaka K, Fujii N (2017) Mutant selection in the self-incompatible plant radish (Raphanus sativus L. var. sativus) using two-step TILLING. Breed Sci 67:268–276

    Google Scholar 

  • Kozik Elżbieta U, Renata N, Marzena N, Barbara D (2012) Level of sterility and morphological flowers differentiation of petaloid male-sterile plants of carrot. J Agric Sci 4(2):187–194

    Google Scholar 

  • Krivsky K, Sverepova AG (1985) Hybridization of cultural and wild carrots (Daucus carota L.) Eucarpia-a meeting on breeding of root vegetables. 6–9 Sept, Olomouc, pp 51–62

    Google Scholar 

  • Kust AF (1970) Inheritance and differential formation of colour and associated pigments in xylem and phloem of carrot Daucus carota L. PhD Thesis, University of Wisconsin

    Google Scholar 

  • Laferrier L, Gabelman WH (1968) Inheritance of color, total carotenoids, alpha-carotene and beta-carotene in carrots (Daucus carota L.). Proc Am Soc Hortic Sci 93:408–418

    Google Scholar 

  • Landry Benoit S, Nathalie H, Takeomi E, Harada John J, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34(4):543–552. https://doi.org/10.1139/g91-084

    Article  Google Scholar 

  • Lange W, Brandenburg WA, De Bock Th SM (1999) Taxonomy and cultonomy of beet (Beta vulgaris L.). Bot J Linn Soc 130:81–96

    Google Scholar 

  • Langridge WHR, Li BJ, Szalay AA (1985) Electric-field mediated stable transformation of carrot protoplasts with naked DNA. Plant Cell Rep 4:355–359

    CAS  PubMed  Google Scholar 

  • Linke B, Nothangel T, Borner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    CAS  PubMed  Google Scholar 

  • Linthorst HJM, van Loon LC, van Rossum CMA, Mayer A, Bol JF, van Roekel SC, Melenhoff EJS, Cornelissen BJC (1990) Analysis of acidic and basic chitinase from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Micro Interact 3:252–258

    CAS  Google Scholar 

  • Liu JR, Jeon JH, Yang SG, Lee HS, Song NM, Jeong WJ (1992) Dry type of carrot (Daucus carota L.) artificial seeds. Sci Hortic 51:1–11

    Google Scholar 

  • Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)- derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum Claire M, Luca C, Greene Elizabeth A, Steven H (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442. http://www.plantphysiol.org/content/123/2/439.full

    Google Scholar 

  • McNaughton IH (1973) Brassica napocampestris (2n = 58), I. Synthesis, cytology, fertility and general considerations. Euphytica 22:301

    Google Scholar 

  • McNaughton IH (1976) Swedes and rapes. In: Simmonds NW (ed) Evolution of crop plants. Longman, London

    Google Scholar 

  • Mehring Lemper M (1987) Genetisch Züchterische Untersuchungenzur Schaffung von Hybrid sortenbei Möhren (Daucus carota L.). Dissertation, Universität Hannover

    Google Scholar 

  • Meikle RAR (1981) Factors affecting the germination and establishment of monogerm sugar beet. BSc Hons Thesis, University of Edinburgh, Edinburgh

    Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

    CAS  PubMed  Google Scholar 

  • Mero CE, Honma S (1985) Inheritance of bolting resistance in an intraspecific Chinese cabbage x turnip cross. Hort Sci 20:881

    Google Scholar 

  • Michalik B (1979) Stability of male sterility in carrot under different growth conditions. De L’Academie Polonaise Des Sciences 26(12):827–832

    Google Scholar 

  • Miroshnichenko GP, Volkov RA (1984) Formation of parasexual hybrids between Arabidopsis thaliana and Brassica campestris may be due to similarity of their DNA. Dokl Akad Nauk SSSR 276:489

    CAS  Google Scholar 

  • Miroshnichenko GP, Volkov RA, Borisyuk NV (1986) Structure of the genomes of fodder turnip, Arabidopsis and their somatic hybrid. Biokhimiya 51:84

    CAS  Google Scholar 

  • Nath P, Velayudhan S, Singh DP (1987) Vegetable for tropical regions. ICAR, New Delhi

    Google Scholar 

  • Nie S, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Wang R, Xie Y, Gong Y, Liu L (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Li C, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Xie Y, Liu L (2016) De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Gen 17:389

    Google Scholar 

  • North C (1979) Plant breeding and genetics in horticulture. The Macmillan Pres Ltd, London, p 150

    Google Scholar 

  • Nothnagel T (1992) Results in the development of alloplasmic carrots (Daucus carota sativus Hoffm.). Plant Breed 109:67–74

    Google Scholar 

  • Nothnagel T, Pand S, Linke B (2000) Male sterility in populations of Daucus and the development of alloplasmic male sterile lines of carrot. Plant Breed 145:112–119

    Google Scholar 

  • Nottingham S (2004) Beetroot, vol 2012. http://www.stephennottingham.co.uk/beetroot.htm

  • Ogura H (1968) Studies on the new male sterility in Japanese radish with special reference to the utilization of this sterility towards practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Olsson G (1963) Induced polyploids in Brassica in recent plant breeding research. Svalof 1946–1961, Akerberg and Hagbg, eds pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae), polymorphisms detected with expressed DNA sequences. Genome 34(4):543–552. https://doi.org/10.1139/g91-084

    Article  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Google Scholar 

  • Park S-H, Lee S-S, Choi J-K, Yoon M-K, Kim K-T, Lim S-H, Mok I-G (2006) Marker-assisted selection of self-Incompatibility allows an efficient double cross breeding in radish (Raphanus sativus L.). In: Proceeding of joint meeting: crucifer genetics workshop & 4th ISHS symposium on Brassicas

    Google Scholar 

  • Paszkowski J, Pisan B, Shillito RD, Hohn T, Hohn B, Potrykus I (1986) Genetic transformation of Brassica campestris var. rapa protoplasts with engineered cauliflower mosaic virus genome. PI Mol Biol 6:303

    CAS  Google Scholar 

  • Peter KV (1998) Genetics and breeding of vegetable crops. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Peterson CE, Simon PW (1986) Carrot breeding. In: Bassette MJ (ed) Breeding vegetable crops. AVI Publ. Co., Westport, pp 321–356

    Google Scholar 

  • Peterson CE, Simon PW, Rubatzky VE, Strandberg JO (1988) Beta 111 carrot. Hortic Sci 23:917

    Google Scholar 

  • Pink DAC (1993) Beetroot. In: Kaloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp 473–477

    Google Scholar 

  • Porceddu A, Falorni A, Ferradini N, Cosentino A, Calcinaro F, Faleri C, Cresti M, Lorenzetti F, Brunetti P, Pezzotti M (1999) Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major auto antigen in insulin-dependent diabetes mellitus. Mol Breed 5:553–560

    CAS  Google Scholar 

  • Prasanth K, Darshan S, Gangadhara K (2014) Utilization of male sterility for hybrid seed production in vegetables. Trends Biosci 7(17):2370–2375

    Google Scholar 

  • Kalila P (2004) Root vegetable crops. J New Seeds Innov Prod Biotechnol Qual Market 6(2/3):266–267

    Google Scholar 

  • Punja ZK (2005) Transgenic carrots expressing a thaumatin like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    CAS  Google Scholar 

  • Purewal SS (1957) Vegetable cultivation in Northern India. Tech Bull 39, ICAR, New Delhi

    Google Scholar 

  • Renard M, Delourme R, Vallee P, Morice J, Pierre J, Pelletier G, Budar F, Primard C, Bonhomme S, Grelon M, Hunzinger J, Darrozes G, Defossez H, Hunzinger J (1995) New concepts in rapeseed F1 hybrid breeding. In: Proceedings of 9th international rapeseed congress, Cambridge, A-7

    Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Lopez-Revilla R, Moreno-Fierros L, Alpuche-Solıs AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84

    CAS  PubMed  Google Scholar 

  • Sabir AA, Ford-Lloyd BV (1991) Processing crop plant germplasm in vitro for mass production of regenerants: a case study with beet. J Biotechnol 17:257

    Google Scholar 

  • Scheike R, Gerold E, Brennicke A, Mehring-Lemper M, Wricke G (1992) Unique patterns of mitochondrial genes, transcripts and proteins in different male sterile cytoplasms of Daucus carota. Theor Appl Genet 83:419–427

    CAS  PubMed  Google Scholar 

  • Schulz B, Westphal L, Wricke G (1994) Linkage groups of isozyme, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 74:67–76

    Google Scholar 

  • Schuphan W (1942) Biochcmische Sortenpriifungan Gartenmohrenalsneuzeitliche Grundlagefiirplanvollc Ziichtungsarbeiten. Ziichtcr 14:25–43

    Google Scholar 

  • Scott RJ, Draper J (1987) Transformation of carrot tissue derived from proembyonic suspension cells: a useful model system for gene expression in plants. Plant Mol Biol 8:265–274

    CAS  PubMed  Google Scholar 

  • Scott SE, Wilkinson MJ (1998) Transgene risk is low. Nature 393(320):320

    CAS  Google Scholar 

  • Simon PW (1984) Carrot genetics. Plant Mol Biol Report 2:54–63

    Google Scholar 

  • Simon PW (1990) Carrot and other horticultural crops as a source of provitamin A carotenes. Hortic Sci 25:1495–1499

    CAS  Google Scholar 

  • Simon PW, Wolff XY (1987) Carotenes in typical and dark orange carrots. J Agric Food Chem 35:1017–1022

    CAS  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980a) Genetic and environmental influences on carrot flavor. J Am Soc Hortic Sci 105:416–420

    Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980b) Correlation between sensory and objective parameters of carrot flavor. J Agric Food Chem 28:559–562

    CAS  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1982) Genotype, soil, and climate effects on sensory and objective components of carrot flavor. J Am Soc Hortic Sci 107:644–648

    Google Scholar 

  • Simon PW, Rubatzky VE, Peterson CE, Kammerlohr DS (1989) High carotene mass carrot population. Hortic Sci 24:174–175

    Google Scholar 

  • Sinskaia EN (1928) The oleiferous plants and root crops of the family cruciferae. Bull Appl Bot Genet Plant Breed 19(3):648

    Google Scholar 

  • Snow AA, Jorgensen RB (1999) Fitness costs associated with transgenic glufosinate tolerance introgressed from Brassica napus subsp. Oleifera (oilseed rape) into weedy Brassica rapa. In: Lutmann PJW (ed) Gene flow and agriculture: relevance for transgenic crops, British crop protection council symposium proceedings, vol 72, pp 137–142

    Google Scholar 

  • Snow AA, Uthus KL, Culley TM (2001) Fitness of hybrids between weedy and cultivated radish: implications for weed evolution. Ecol Appl 11(3):934–943

    Google Scholar 

  • Solieman TH, Abdel-Razzak HS, Doss MM, El-Gazzar AR (2012) Efficiency of mass selection and selfing with selection breeding methods on improving some important characters of three eggplant cultivars. Am Eurasian J Agric Environ Sci 12(3):342–351

    Google Scholar 

  • Song GK et al (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Can J Plant Sci 83(2):271–274. Proceedings of the National Academy of Science, turnip rape

    Google Scholar 

  • Sota F, Yoko S (2019) Molecular identification of the causal locus for the petaloid phenotype in Daucus carota. Breed Sci 69:186–188

    Google Scholar 

  • Stein M (1979) Untersuchungenzu Heterosiseffektenbeiwichtigen Inhaltsstoffen von Gemiise. Tag-Ber, Akad Landwirtsch Wiss. DDR, Berhn 168, pp 401–409

    Google Scholar 

  • Stein M, Nothangel TH (1995) Some remarks on carrot breeding (Daucus carota sativus Hoffm.). Plant Breed 114:1–11. 179-9541/95/1401-0001

    Google Scholar 

  • Steinborn R, Weihe A, Boerner T (1992) Mitochondrial genome diversity within a cultivar of Daucus carota (ssp. sativus) revealed by restriction fragment analysis of single plants. Plant Breed 109:75–77

    CAS  Google Scholar 

  • Stommel JR, Simon PW (1989) Phenotypic recurrent selection and heritability estimates for total dissolved solids and sugar type in carrot. J Am Soc Hortic Sci 114:695–699

    Google Scholar 

  • Swarup V (1991) Breeding procedure for cross pollinated vegetable crops. ICAR, New Delhi, p 118

    Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  PubMed  Google Scholar 

  • Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144

    CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of transformed genotypes and phenotypes. Cell 37:959–967

    CAS  PubMed  Google Scholar 

  • Thomas JC, Guiltinan MJ, Bustos S, Thomas T, Nessler C (1989) Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens. Plant Cell Rep 8:354–357

    CAS  PubMed  Google Scholar 

  • Thompson DJ (1961) Studies on the inheritance of male-sterility in the carrot (Daucus carota L. var. sativa). Proc Am Soc Hortic Sci 78:332–338

    Google Scholar 

  • Tigelaar H, Stuiver MH, Molendijk L, Troost-van Deventer E, Sela-Buurlage MB, Storms J, Plooster J, Sijbolts F, Custers J, Apotheker de Groot M, Melchers LS (1996) Broad spectrum fungal resistance in transgenic carrot plants. Phytopathology 86:57

    Google Scholar 

  • Timin NI, Vasilevsky VA (1997) Genetic peculiarities of carrot (Daucus carota L.). J Appl Genet 38A:232–236

    Google Scholar 

  • UPOV (1976) Guidelines for the conduct of tests for distinctness, homogeneity and stability. International Union for Protection of new varieties of plant, carrot (Daucus carota L). TG/49/3

    Google Scholar 

  • Vogel G (1996) Handbuch des speziellen Gemusebaus. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Wang LJ, Ni DA, Chen YN, Lee ZM (2001) The expression of Mycobacterium tuberculosis MPT64 protein in transgenic carrots. Acta Bot Sin 43:132–137

    CAS  Google Scholar 

  • Wang F, Guangyuan L, Shuangchen C, Yan J, Wang S (2015) Characterization of a new leaf-compound radish mutant (Raphanus sativus L.). J Appl Hortic 17(2):115–120

    CAS  Google Scholar 

  • Watson JF, Gabelman WH (1984) Genetic analysis of betacyanine, betaxanthine and sucrose concentrations in roots of table beet. J Am Soc Hortic Sci 109:386

    CAS  Google Scholar 

  • Watts L (1980) Flower and vegetable plant breeding. Grower Books, London, p 179

    Google Scholar 

  • Welch JE, Grimball EL (1947) Male sterility in the carrots. Science 106:594. https://doi.org/10.1126/science.106.2763.594

    Article  CAS  PubMed  Google Scholar 

  • Westphal L, Wricke G (1991) Genetic and linkage analysis of isozyme loci in Daucus carota L. Euphytica 56:259–267

    CAS  Google Scholar 

  • Wolyn DJ, Chahal A (1998) Nuclear and cytoplasmic interactions for petaloid male-sterile accessions of wild carrot (Daucus carota L.). J Am Soc Hortic Sci 123(5):849–835

    CAS  Google Scholar 

  • Wolyn DJ, Gabelman WH (1989) Inheritance of root and petiole pigmentation in red table beet. J Hered 80:33

    Google Scholar 

  • Wurtele ES, Bulka K (1989) A simple, efficient method for the Agrobacterium-mediated transformation of carrot callus cells. Plant Sci 61:253–262

    CAS  Google Scholar 

  • Yi G, Park H, Kim JS, Chae WB, Park S, Huh JH (2014) Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.). Hortic Environ Biotechnol 55:548–556

    CAS  Google Scholar 

  • Yu Hee J, Seunghoon B, Joon LY, Ara C, Hwan MJ (2019) The radish genome database (Radish GD): an integrated information resource for radish genomics. Database 2019:1–10. https://doi.org/10.1093/database/baz009

    Article  CAS  Google Scholar 

  • Ziemborska JM, Harney PM (1986) Self-incompatibility in H2 generations derived from anther culture of hybrids between self-incompatible rape and self-incompatible rutabaga. In: Cruciferae genetics workshop III proceedings, 29–30 May, University of Guelph

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, R.K., Kumari, R., Vikram, A. (2020). Efficient Methods for the Improvement of Temperate Root Vegetables. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_7

Download citation

Publish with us

Policies and ethics