Skip to main content

Recent Trends in Sweet Pepper Breeding

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Sweet pepper is one of the most important members of a Solanaceae family. It is extensively cultivated throughout India especially in hills during summer months and as autumn crop in Karnataka, Maharashtra, Tamil Nadu, Bihar, West Bengal and Madhya Pradesh. Germplasm collection, characterization and conservation are the major step in improvement of sweet pepper, which can be used in sweet pepper improvement programme. Sweet pepper fruits are generally blocky, square, thick-fleshed, three- to four-lobed and non-pungent. Perfect fruit shape, size and colour along with mild taste are the main quality parameters that make the task of developing new genotypes/variety/hybrids very sticking. It is a gifted crop plant, so its consumption is increasing all over the world. Continuously increasing demand sweet peppers, emphasis is being given to the development of hybrids worldwide. Many of the Capsicum varieties in the market are hybrids. Considerable amount of heterosis is reported in this crop for many horticultural and economical characters. Hybrid cultivars are very popular among the farmers due to their superior performance. Seed of hybrids is produced by the use of hand emasculation and pollination method that is why per kilogram cost of seed is very high ranging between Rs.1.0 Lac and 5.0 Lakh. The cost of seed can be reduced by using genetic mechanisms like male sterility. Both genic male sterility and cytoplasmic genic male sterility can be used in sweet pepper hybrid seed production. Chemical gametocides may compliment the use of male sterility in bell pepper for better hybridization. Micropropagation could be used for maintenance and multiplication of parental lines. Molecular genetics, tissue culture and genetic engineering are becoming increasingly important in solving major production issues. Sweet pepper is sensitive to biotic and abiotic stresses; therefore there is an immediate need to identify multiple disease-resistant varieties. The cultivation of bell pepper is only possible in few states as prone to abiotic stresses, so there is need to develop varieties for its cultivation in nontraditional areas. Several inter- and intraspecific genetic maps with wide distribution of markers covering the whole genome have been developed in Capsicum genus. Breeders’ access to the pepper genomic information would provide the choice of markers from different linkage groups, thus paving the way for gene cloning and its introgression into the elite breeding lines through MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abak K, Pochard E, Dumas de Vaulx R (1982) Transmission of resistance to Phytophthora capsici on roots and stems of pepper plants: study of doubled haploid lines issued from the cross ‘PM217’בYolo Wonder’ through anther culture. Capsicum Newsl 1:62–63

    Google Scholar 

  • Agrawal S, Chandra N, Kothari SL (1989) Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. Mathania). Plant Cell Tissue Organ Cult 16:47–55

    Google Scholar 

  • Anand N, Deshpande AA, Sridhar TS (1987) Resistance to powdery mildew in an accession of Capsicum frutescens and its inheritance pattern. Capsicum Eggplant Newsl 6:77–78

    Google Scholar 

  • Agarwal A, Gupta S, Ahmed Z (2007) Influence of plant densities on productivity of bell pepper (Capsicum annuum L.) under greenhouse in high altitude cold desert of Ladakh. In: Int. Symposium on Medicinal & nutrceutical Plants. 756:309–314

    Google Scholar 

  • Ahmed N, Hurra M, Wani SA Khan SH (2003). Gene action and combining ability for fruit yield and its component characters in sweet pepper Capsicum Eggplant Newslett 22:55–58

    Google Scholar 

  • Azad P (1991) Fate and role of chemical constituents of chilli fruits during infection with Colletotrichum capsici. Indian Phytopathol 44:129–131

    CAS  Google Scholar 

  • Azipiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    Google Scholar 

  • Babak OG, Nikitinskaya TV, Yatsevich KK, Nekrashevich NA, Kilchevsky AV (2016) Development of DNA-markers to fruit quality genes of sweet pepper (Capsicum annuum L.). In: Proceedings of XVIth EUCARPIA capsicum and eggplant working group meeting, Kecskemét, 12–14 Sept 2016, pp 137–144

    Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    CAS  PubMed  Google Scholar 

  • Barksdale TH, Papavizas GC, Johnson SA (1984) Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. 68:506–509. https://doi.org/10.1094/PD-68-506

  • Bartoszewski G, Waszczak C, Gawronski P, Stepien I, Bolibok-Bragoszewska H, Palloix A, Lefebvre V, Korzeniewska A, Niemirowicz-Szczytt K (2012) Mapping of the ms8 male sterility gene in sweet pepper (Capsicum annuum L.) on the chromosome P4 using PCR-based markers useful for breeding programmes. Euphytica 186:453–461

    CAS  Google Scholar 

  • Bartual R, Carbonell EA, Marsal JI, Tello JC, Campos T (1991) Gene action in resistance to peppers (Capsicum annuum) to Phytophthora stem blight (Phytophthora capsici L.). Euphytica 54:195–200

    Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103

    CAS  PubMed  Google Scholar 

  • Blat SF, da Costa CP, Vencovsky R, Sala FC (2005) Inheritance of reaction to Leveillula taurica (Lev.) Arn. in Capsicum baccatum. Crop Breed Appl Biotechnol 5:467–472. https://doi.org/10.1590/S0103-90162005000100008

    Article  Google Scholar 

  • Blat SF, da Costa CP, Vencovsky R, Sala FC (2006) Hot pepper (Capsicum chinense, Jacq.) inheritance of reaction to powdery mildew. Sci Agric 63:471–474. https://doi.org/10.1590/S0103-

    Article  Google Scholar 

  • Bonnet J, Danan S, Boudet C, Barchi L, Sage-Palloix AM, Caromel B et al (2007) Are the polygenetic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? 115:253–264. https://doi.org/10.1007/s00122-007-0561-x

  • Borychowski A, Niemirowicz-Szczytt K, Jcdraszko M (2002) Plant regeneration from sweet pepper (Capsicum annuum L.) hypocotyls Explants. Acta Physiol Plant 24:257–264

    CAS  Google Scholar 

  • Caranta C, Palloix A, Gebre-Selassie K, Lefebvre V, Moury B, Daubeze AM (1996) A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to pepper veinal mottle virus. Phytopathology 86:739–743

    Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolatespecific and broad-spectrum quantitative trait loci. Mol Plant-Microbe Interact 10:872–878

    CAS  Google Scholar 

  • Cerkauskas RF, Ferguson G, Banik M (2011) Powdery mildew (Leveillula taurica) on greenhouse and field peppers in Ontario: host range, cultivar response and disease management strategies. Can J Plant Pathol 33:485–498. https://doi.org/10.1080/07060661.2011.619828

    Article  CAS  Google Scholar 

  • Chassy AW, Bui L, Renaud ENC, Horn MV, Mitchell AE (2006) Three-year Comparison of the Content of Antioxidant Microconstituents and Several Quality Characteristics in Organic and Conventionally Managed Tomatoes and Bell Peppers. J Agric Food Chem18;54(21):8244–52

    Google Scholar 

  • Chávez-Mendoza C, Sánchez E, Carvajal-Millán E, Munoz-Márquez E, GuevaraAguilar A (2013) Characterization of the nutraceutical quality and antioxidant activity in Bell pepper in response to grafting. Molecules 18:15689–15703

    PubMed  PubMed Central  Google Scholar 

  • Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Temperini O, Rea E, Salerno A, Pierandrei F (2008) Influence of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under greenhouse conditions. Acta Hortic 782:359–363

    Google Scholar 

  • Damicone J (2009) Fungicide resistance management. Fact Sheets EPP-7663. Oklahoma State University Division of Agricultural Sciences and Natural Resources website. Available online at: http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Rendition-3508/F-7663web.pdf

  • Daskaloff S (1973) Investigation of induced mutants in Capsicum annuum L. III. Mutants in the variety Zlaten Medal. Genet Plant Breed 6:419–429

    Google Scholar 

  • Daskaloff S (1974) Investigation of induced mutants in sweet pepper (Capsicum annuum L.). In: Proceedings of the 1st meeting of the capsicum breeding and genetics, Budapest, 1–4 July 1974, pp 81–90

    Google Scholar 

  • Daubeze AM, Palloix A, Pochard E (1990) Resistance of androgenetic autodiploid lines of pepper to Phytophthora capsici and tobacco mosaic virus under high temperature. Capsicum Newsl 8:47–48

    Google Scholar 

  • Daubèze AM, Hennart JW, Palloix A (1995) Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breed 114:327–332. https://doi.org/10.1111/j.1439-0523.1995.tb01243.x

    Article  Google Scholar 

  • de Oliveira CD, Braz LT, dos Santos JM, Banzatto DA, de Oliveira PR (2009) Hot peppers resistance to root-knot-nematodes and stump/rootstock compatibility among hot peppers and red pepper hybrids. Hortic Bras 27:520–526. (in Portuguese with English abstract)

    Google Scholar 

  • Dhaliwal MS, Jindal SK (2014) Induction and exploitation of nuclear and cytoplasmic male sterility in pepper (Capsicum spp.): a review, The Journal of Horticultural Science and Biotechnology, 89:5, 471–479

    Google Scholar 

  • De Souza VL, Café-Filho AC (2003) Resistance to Leveillula taurica in the genus Capsicum. Plant Pathol 52:613–619. https://doi.org/10.1046/j.1365-3059.2003.00920.x

    Article  Google Scholar 

  • Delis M, Garbaczewska G, Niemirowica Szczytt K (2005) Differential of adventitious buds from Capsicum annuum L. hypocotyls after co-culture with Agrobacterium tumefaciens. Acta Biol Cracov Ser Bot 47:193–198

    Google Scholar 

  • Deshpande AA, Anand N, Pathak CS, Sridhar TS (1985) New sources of powdery mildew resistance in Capsicum species. Capsicum Eggplant Newsl 4:75–76

    Google Scholar 

  • Di Vito M, Zacheo G, Catalano F, Oreste G (1995) Effect of temperature on stability of resistance to root-knot nematode (Meloidogyne spp.). In: Proceedings of EUCARPIA IXth meeting on genetics and breeding on capsicum and eggplant, Budapest, 21–25 Aug, pp 230–232

    Google Scholar 

  • Diaz I, Moreno R, Power JB (1988) Plant regeneration from protoplasts of Capsicum annuum. Plant Cell Rep 7:210–212

    CAS  PubMed  Google Scholar 

  • Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L.-effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hortic Sci 122:468–475

    CAS  Google Scholar 

  • Doñas-Uclés F, Jiménez-Luna M, Góngora-Corral JA, Pérez-Madrid D, Verde-Fernández D, Camacho-Ferre F (2014) Influence of three rootstocks on yield and commercial quality of Italian sweet pepper. Ciência e Agroteccnologia 38:538–545

    Google Scholar 

  • Dumas de Vaulx R, Chambonnet D, Pochard E (1981) Culture in vitro d’anthères de piment (Capsicum annuum L.): amelioration des taux d’obtention de plantes chez différents génotypes par des traitements à+ 35 C. Agronomie 1:859–864. (in French)

    Google Scholar 

  • Dunn AR, Lange HW, Smart CD (2014) Evaluation of commercial bell pepper cultivars for resistance to Phytophthora blight (Phytophthora capsici). Plant Health Research 15:19–24

    Google Scholar 

  • Fari M, Czako M (1981) Relationship between position and Plant Health Research morphogenetic response of pepper hypocotyl ex-plant culture in vitro. Sci Hortic 15:207–213

    Google Scholar 

  • Esin A, Hilal B, Selcen Y, Tolga Y. 2016. Androgenic responses of 64 ornamental pepper (Capsicum nnuum L.) genotypes to shed-microspore culture in the autumn season. Turkish Journal of Biology 40(3): 706-717

    Google Scholar 

  • Geboloğlu N, Yanar Y, Yanar D, Akyazi F, Çakmak P (2011) Role of different rootstocks on yield and resistance for Fusarium oxysporum, Verticillium dahliae and Meloidogyne incognita in grafted peppers. Eur J Hortic Sci 76:41–44

    Google Scholar 

  • Gemes Juhasz A, Kristof Z, Vagi P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hortic 829:61–64

    Google Scholar 

  • George L, Narayanaswamy S (1973) Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470

    Google Scholar 

  • Gisbert C, Sánchez-Torres P, Raigon MD, Nuez F (2010) Phytophthora capsici resistance evaluation in pepper hybrids: agronomic performance and fruit quality of pepper grafted plants. J Food Agric Environ 8:116–121

    Google Scholar 

  • Gisbert C, Trujillo-Moya C, Sánchez-Torres P, Sifres A, Sánchez-Castro E, Nuez F (2013) Resistance of pepper germplasm to Meloidogyne incognita. Ann Appl Biol 162:110–118

    CAS  Google Scholar 

  • Guerrero-Moreno A, Laborde JA (1980) Current status of pepper breeding for resistance to Phytophthora capsici in Mexico. In: Proceedings of the IVth Eucarpia Meeting of the Capsicum working group, Wageningen

    Google Scholar 

  • Gunay AL, Rao PS (1978) In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper. Plant Sci Lett 11:365–372

    CAS  Google Scholar 

  • Gyulai G, Gemesne JA, Sagi Z, Venczel G, Pinter P, Kristof Z, Torjek O, Heszky L, Bottka S, Kiss J et al (2000) Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J Plant Physiol 156:168

    CAS  Google Scholar 

  • Han K, Jeong HJ, Sung J, Keum YS, Cho MC, Kim JH, Kwon JK, Kim BD, Kang BC (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31:537–548

    CAS  Google Scholar 

  • Harini I, Lakshmi SG (1993) Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.). Plant Sci 89:107–112

    Google Scholar 

  • Harp TL, Pernezny K, Lewis Ivey ML, Miller SA, Kuhn PJ, Datnoff L (2008) The etiology of recent pepper anthracnose outbreaks in Florida. Crop Prot 27:1380–1384. https://doi.org/10.1016/j.cropro.2008.05.006

    Article  Google Scholar 

  • Hendy H, Pochard E, Dalmasso A, Bongiovanni M (1985) Transmission héréditaire de la résistance aux nematodes Meloidogyne Chitwood (Tylenchida) portée par 2 lignées de Capsicum annuum L.: étude de descendances homozygotes issues d’androgenèse. Agronomie 5:93–100. (in French)

    Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity Environ Expt Bot 66(2):270–278

    Google Scholar 

  • Hennart JW (2014) Capsicum rootstock. Patent number US20140096289 A1

    Google Scholar 

  • Hirata Y, Ogata S, Kurita S, Nozawa GT, Zhou J, Wu S (2003) Molecular mechanism of graft transformation in Capsicum annuum. Acta Hortic 625:125–130

    CAS  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husain S, Jain A, Kothari SL (1999) Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant Cell Rep 19:64–68

    CAS  PubMed  Google Scholar 

  • Iqbal J, Yousaf U (2018) Anther culturing a unique methodology in achieving homozygosity. Asian J Adv Agric Res 8(2):1–9

    Google Scholar 

  • Jang Y, Moon JH, Lee JW, Lee SG, Kim SY, Chun C (2013) Effects of different rootstocks on fruit quality of grafted pepper (Capsicum annuum L.). Korean J Hortic Sci Technol 31:687–699

    Google Scholar 

  • Jin A, Yongsheng H, Boaxi Z (2007) Genetic linkage map construction and QTL analysis for Phytophthora capsici L. in pepper. 10:003

    Google Scholar 

  • Jindal SK, Dhaliwal MS, Meena OP (2019) Molecular advancements in male sterility systems of Capsicum: a review. Plant Breed China Vegetables. https://doi.org/10.1111/pbr.12757

  • Joshi, S. and Singh, B. (1980). A note on hybrid vigour in sweet pepper (Capsicum annuum L.). Haryana J. Hort. Sci 9:90–92

    Google Scholar 

  • Joshi S, Thakur PC, Verma TS (1995) Hybrid vigour in bell shaped paprika (Capsicum annuum L.). Veg Sci 22(2):105–108

    Google Scholar 

  • Keles D, Pınar H, Ata A, Taskın H, Yıldız S, Buyukalaca S (2015) Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience 50(11):1671–1676

    Google Scholar 

  • Kim B, Hur J (1990) Inheritance of resistance to bacterial spot and to Phytophthora blight in pepper. J. Kor. Soc. Hort. Sci. 31:350–357

    Google Scholar 

  • Kim CH, Park KS (1988) A predictive model of disease progression of red pepper anthracnose. Korean J Pathol J. Kor. Soc. Hort. Sci. 4:325–331

    Google Scholar 

  • Kim YS, Kuk YL, Kim KM (2007) Inheritance and expression of transgenes through anther culture of transgenic hot pepper. J Biosci 62:743–746

    CAS  Google Scholar 

  • Kim HJ, Naham SH, Lee HR, Yoon GB, Kim KT, Kang BC et al (2008a) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). 118:15–27. https://doi.org/10.1007/s00122-008-0873-5

  • Kim M, Jang IC, Kim JA, Park EJ, Yoon M, Lee Y (2008b) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    CAS  PubMed  Google Scholar 

  • Ko MK, Soh H (2007) Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. Hortic Sci 42:1317–1501

    Google Scholar 

  • Kristiansen K, Andersen SB (1993) Effects of donor plant temperature, photoperiod, and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109

    Google Scholar 

  • Kumar AM, Reddy KN, Sreevathsa R, Ganeshan G, Udayakumar M (2009) Towards crop improvement in bell pepper (Capsicum annuum L.): Transgenics (uid A::hpt II) by a tissue-culture-independent Agrobacterium-mediated in planta approach. Sci Hortic 119:362–370

    CAS  Google Scholar 

  • Kumar S, Singh V, Singh M, Rai S, Kumar S, Rai S K and Rai M (2007) Genetics and distribution of fertility restoration associated RAPD markers in pepper (Capsicum annuum L.)Scientia Horticulturae 111:197–202

    Google Scholar 

  • Kuo JS, Wang YY, Chien NF, Ku SJ, Kung ML, Hsu HC (1973) Investigations on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot Sin 15:47–52

    Google Scholar 

  • Lacasa A, Marsal JI, Tello JC (1993) Epistasis in the resistance of pepper to Phytophthora stem blight (Phytophthora capsici L.) and its significance in the prediction of double cross performances. 72:149–151. https://doi.org/10.1007/BF00023784

  • Lee JM, Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61–124

    Google Scholar 

  • Lee YH, Kim HS, Kim JY, Jung M, Park YS, Lee JS, Choi SH, Her NH, Lee JH, Hyung NI, Lee CH, Yang SG, Harn CH (2004) A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep 23:50–58

    CAS  PubMed  Google Scholar 

  • Lee CJ, Yoo EY, Shin JH, Lee J, Hwang HS, Kim BD (2005) Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol Cell 19:262–267

    CAS  Google Scholar 

  • Lee J, Hong J, Do J, Yoon J, Lee JD, Hong JH, Do JW, Yoon JB (2010a) Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. J Crop Sci Biotechnol 13:227–233. https://doi.org/10.1007/s12892-010-0081-0

    Article  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) A CAPS marker associated with the partial restoration of cyltoplasmic male sterility in chilli pepper. Mol Breeding 21:95–104

    Google Scholar 

  • Lee JM, Kubota C, Tsao SJ, Bie Z, Hoyos Echevarria P, Morra L, Oda M (2010b) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127:93–105

    Google Scholar 

  • Lee J, Han JH, An CG, Lee WP, Jae B, Yoon JB (2010c) A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, ‘Paprika’ (Capsicum annuum L.). Breed Sci 60:93–98

    CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Do JW, Ryu H, Kim SH, Park HG (2010d) A codominant SCAR marker linked to the genic male sterility gene (ms1) in chili pepper (Capsicum annuum). Plant Breed 129:35–38

    CAS  Google Scholar 

  • Lefebvre V (2004) Molecular markers for genetics and breeding: development and use in pepper (Capsicumspp.). In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, vol 55. Springer, Berlin/Heidelberg, pp 189–214

    Google Scholar 

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor Appl Genet 93:503–511. https://doi.org/10.1007/BF00417941

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Goffinet B, Chauvet J-C, Caromel B, Signoret P, Brand R, Palloix A (2001) Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RFLPand phenotypic data. Theor Appl Genet 102:741–750

    CAS  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvert JC, Daubèze A, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–845. https://doi.org/10.1139/g02-053

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Daubèze AM, Rouppe van der Voort J, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666. https://doi.org/10.1007/s00122-003-1307-z

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xie B, Zhang B, Zhao K, Luo K (2000) The current problems and the solution for pepper disease-resistant gene engineering. Acta Hortic Sin 27:509–514. (in Chinese)

    Google Scholar 

  • Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep 21:785–788

    CAS  PubMed  Google Scholar 

  • Liu W-Y, Kang J-H, Jeong H-S, Choi H-J, Yang H-B, Kim K-T et al (2014) Combined used of bulk-segregated analysis of microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. 127:2503–2513. https://doi.org/10.1007/s00122-014-2394-8

  • Louws FJ, L Cary, CL Rivard, C Kubota (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthro-pods and weeds. Sci Hort 127:127–146

    Google Scholar 

  • Mahasuk P, Khumpeng N, Wasee S, Taylor PWJ, Mongkolporn O (2009) Inheritance of resistance to anthracnose (Colletotrichum capsici) at seedling and fruiting stages in chili pepper (Capsicum spp.). Plant Breed 128:701–706. https://doi.org/10.1111/j.1439-0523

    Article  Google Scholar 

  • Manoharan M, Sree Vidya CS, Lakshmi Sita G (1998) Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var Pusa jwala). Plant Sci 131:77–83

    CAS  Google Scholar 

  • Martin JA, Crawford JH (1951) Several types of sterility in C. frutescens. Proc. Am. Soc. Hortic. Sci 57:335–338

    Google Scholar 

  • Milerue N, Nikorpun M (2006) Studies on heterosis of chili (Capsicum annuum L.) Kasetsart J. Nat. Sci. 34:190–196

    Google Scholar 

  • Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map Breeding Science 57:129–134

    Google Scholar 

  • Mityko J, Andrasfalvy A, Csillery G, Fári M (1995) Anther-culture response in different genotypes and F1 hybrids of pepper (Capsicum annuum L.). Plant Breed 114:78–80

    Google Scholar 

  • Montri P (2009) Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose in Thailand. Plant Dis 93:17–20. https://doi.org/10.1094/PDIS-93-1-0017

    Article  CAS  PubMed  Google Scholar 

  • Murthy HMK, Deshpande AA (1997) Studies on genetics of powdery mildew [Leveillula taurica (Lev.) Arn.] resistance in chilli (Capsicum annuum L.). Veg Sci 24:127–131

    Google Scholar 

  • Naresh P, Lin S-W, Lin C-Y, Wang Y-W, Schafleitner R, Kilian A, Kumar S (2018) Molecular markers associated to two non-allelic genic MALE sterility genes in peppers (Capsicum annuum L.). Front Plant Sci 9:1343. https://doi.org/10.3389/fpls.2018.01343

    Article  PubMed  PubMed Central  Google Scholar 

  • Nianiou I, Karavangeli M, Zambounis A, Tsaftaris A (2002) Development of Pepper Transgenic Plants via Agrobacterium and Biolistic Transformation. Acta Hortic 579:83–87

    CAS  Google Scholar 

  • Nikolova V, Todorova V, Stefanova Y, Tomlekova N (2010) Cytological particularities in nuclear and nuclear-cytoplasmic male sterile pepper lines. Caryologia 63:262–268

    Google Scholar 

  • Nogueira DW, Nogueira DG, Maluf WR, Maciel GM, dos Reis Figueira A, de Menezes CB (2012) Marker-assisted selection for resistance to potyvirus in sweet pepper. Pesq agropec bras Brasília 47(7):955–963

    Google Scholar 

  • Nowaczyk P, Olszewska D, Kisiala A (2009) Individual reaction of Capsicum F2 hybrid genotypes in anther cultures. Euphytica 168:225–233

    Google Scholar 

  • Ochoa-Alejo N, Ireta-Moreno L (1990) Culture differences in shoot forming capacity of hypocotyls tissue of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci Hortic 42:21–28

    Google Scholar 

  • Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D et al (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). 48:698–711. https://doi.org/10.1139/g05-028

  • Ohta Y (1991) Graft-transformation, the mechanism for graft-induced genetic changes in higher plants. Euphytica 51:91–99

    Google Scholar 

  • Oka Y, Offenbach R, Pivonia S (2004) Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. J Nematol 36:137–141

    PubMed  PubMed Central  Google Scholar 

  • Ortega RG, Espanol CP, Zueco JC (1991) Genetics of resistance to Phytophthora capsici in the pepper line ‘SCM-334’. Plant Breed 107:50–55. https://doi.org/10.1111/j.1439-0523.1991.tb00527.x

    Article  Google Scholar 

  • Ortega RG, Espanol CP, Zueco JC (1992) Genetic relationships among four pepper genotypes resistant to Phytophthora capsici. 108:118–125. https://doi.org/10.1111/j.1439-0523.1992.tb00110.x

  • Ozsan T, Onus AN (2018) Does glutamine promote the development of pepper (Capsicum annuum L.) Anthers in vitro? J Sci Eng Res 5(11):228–236

    CAS  Google Scholar 

  • Palada MC, Wu DL (2008a) Evaluation of chili rootstocks for grafted sweet pepper production during the hot-wet and hot-dry seasons in Taiwan. Acta Hortic 767:167–174

    Google Scholar 

  • Palada MC, Wu DL (2008b) Evaluation of chili rootstocks for grafted sweet pepper production during the hot-dry seasons in Taiwan. Acta Hortic 767:151–156

    Google Scholar 

  • Palloix A, Daubeze AM, Pochard E (1988) Phytophthora root rot of pepper influence of host genotype and pathogen strain on the inoculum density-disease severity relationships. 123:25–33. https://doi.org/10.1111/j.1439-0434.1988.tb01033.x

  • Palloix A, Daubeze AM, Phaly T, Pochard E (1990) Breeding transgressive lines of pepper for resistance to Phytophthora capsici in a recurrent selection system. Euphytica 51:141–150

    Google Scholar 

  • Park S, Kim SH, Park HG, Yoon JB (2009) Capsicum germplasm resistant to pepper anthracnose differentially interact with Colletotrichum isolates. Hortic Environ Biotechnol 50:17–23

    Google Scholar 

  • Parra-Vega V, Renau-Morata B, Sifres A, Segui-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Org 112:353–360

    CAS  Google Scholar 

  • Penella C, Nebauer SG, Lopéz-Galarza S, SanBautista A, Gorbe E, Calatayud A (2013) Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. J Food Agric Environ 11:1101–1107

    CAS  Google Scholar 

  • Penella C, Nebauer SG, Bautista AS, López-Galarza S, Calatayud T (2014) Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses. J Plant Physiol 171:842–851

    CAS  PubMed  Google Scholar 

  • Penella C, Nebauer SG, Quiñones A, Bautista AS, López-Galarza S, Calatayud A (2015) Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Sci 230:12–22

    CAS  PubMed  Google Scholar 

  • Peterson PA (1958) Cytoplasmically inherited male sterility in Capsicum. Am Nat 92:111–119

    Google Scholar 

  • Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001) Defense response genes co-localize with the quantitative disease resistance loci in pepper. 103:920–929. https://doi.org/10.1007/s001220100726

  • Piedra-Buena A, García-Alvarez A, Díez-Rojo MA, Ros C, Fernández P, Lacasa A, Bello A (2007) Use of pepper crop residues for the control of rootknot nematodes. Bioresour Technol 98:2846–2851

    CAS  PubMed  Google Scholar 

  • Pinheiro JB, Boiteux LS, Almeida MRA, Pereira RB, Galhardo LCS, Carneiro RMDG (2015) First report of Meloidogyne enterolobii in Capsicum rootstocks carrying the Me1 and Me3/Me7 genes in Central Brazil. Nematropica 45:184–188

    Google Scholar 

  • Pochard ED, Daubeze AM (1980) Study and evaluation of components of a case of polygenic resistance: the resistance of red pepper to Phytophthora capsici. Annales de l’Amelioration des Plantes 30:377–398

    Google Scholar 

  • Pochard E, Palloix A, Daubèze AM (1986) The use of androgenetic autodiploid lines for the analysis of complex resistance systems in the pepper. In: VIth Eucarpia meeting on genetics and breeding on capsicum and eggplant, Saragossa, Annales de l’Amelioration des Plantes pp 105–109

    Google Scholar 

  • Poonpolgul S, Kumphai S (2007) Chilli pepper anthracnose in Thailand. In: Oh DG, Kim KT (eds) Abstracts of the first international symposium on chilli anthracnose. National Horticultural Research Institute, Rural Development of Administration, Jeollabukdo

    Google Scholar 

  • Poulos MJ (1994) Pepper breeding (Capsicumspp.): achievements, challenges and possibilities. Plant Breed Abst 64(2):143–154

    Google Scholar 

  • Qin X, Rotino GL (1993) Anther culture of several sweet and hot pepper genotypes. Capsicum Eggplant Newsl 12:59–62

    Google Scholar 

  • Rao MK, Devi KU, Arundhati A (1990) Applications of genic male sterility in plant breeding. Plant Breed 105:1–25

    Google Scholar 

  • Reifschneider FJB, Boiteux LS, Dellavecchia PT, Poulos JM, Kuroda N (1992) Inheritance of adult plant resistance to Phytophthora capsici in pepper. 62:45–49. https://doi.org/10.1007/BF00036086

  • Rodeva V, Irikova T, Todorova V (2004) Anther culture of pepper (Capsicum annuum L.): comparative study on effect of the genotype. Biotechnol Biotechnol Equip 3:34–38

    Google Scholar 

  • Rodeva V, Grozeva S, Todorova V (2006) In vitro answer of Bulgarian pepper (Capsicum annuum L.) varieties. Genetica (Serbia) 38:129–136

    Google Scholar 

  • Ros C, Gueffero MM, Gutrao P, Lacasa A, Martinex MA, Torres J, Barcelo N, Gonzalez A (2002) Response of pepper stock to Meloidogyne incognita in glasshouses in the southeast of Spain. Nematology 4:237. (Abstract)

    Google Scholar 

  • Ros-Ibáñez C, Robertson L, Martínez-Lluch MC, Cano-García A, Lacasa-Plasencia A (2014) Development of virulence to Meloidogyne incognita on resistant pepper rootstocks. Span J Agric Res 12:225–232

    Google Scholar 

  • Rouphael Y, Cardarelli M, Rea E, Colla G (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ Expt Bot 63:49–58

    Google Scholar 

  • Saadoun M, Allagui MB (2013) Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae) by grafting onto resistant rootstock. Phytopathol Mediterr 52:141–147

    Google Scholar 

  • Saini SS, Sharma PP (1978) Inheritance of resistance to fruit rot (Phytophthora capsici Leon) and induction resistance in bell pepper (Capsicum annuum L.). 27:721–723. https://doi.org/10.1007/BF00023707

  • Sariah M (1994) Incidence of Colletotrichum spp. on chili in Malaysia and pathogenicity of C. gloeosporioides. Biotrop Spec Publ 54:103–120

    Google Scholar 

  • Sastrosumarjo S (2003) Formation of Antracnose-Resistant Chili Varieties with a Conventional Method and Biotechnology Approach. Research Report RUT VIII, Ministry of Research and Technology RI LIPI, Jakarta

    Google Scholar 

  • Saxena A, Raghuvanshi R, Singh HB (2014) Molecular, phenotypic and pathogenic variability in Colletotrichum isolates of subtropical region in North Eastern India, causing fruit rot of chillies. J Appl Microbiol 117:1422–1434. https://doi.org/10.1111/jam.12607

    Article  CAS  PubMed  Google Scholar 

  • Scott P, Lyne RL, Ap Rees T (1995) Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L.). Planta 197:435–441

    CAS  Google Scholar 

  • Schwarz D, Öztekin GB, Tüzel Y, Brückner B., Krumbein A (2013) Rootstocks can enhance tomato growth and quality characteristics at low potassium supply Sci Hort 149:70–79

    Google Scholar 

  • Segui-Simarro JM, Corral-Martinez P, Parra-Vega V, Gonzalez-Garcia B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778

    CAS  PubMed  Google Scholar 

  • Sharma PN, Kaur M, Sharma OP, Sharma P, Pathania A (2005) Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of peppers in the subtropical region of north western India. J Phytopathol 153:232–237. https://doi.org/10.1111/j.1439-0434.2005.00959.x

    Article  Google Scholar 

  • Sharma VK, Punetha S, Sharma BB (2008) Heterosis studies for earliness, fruit yield and yield attributing traits in bell pepper. Afr J Agric Res 8(29):4088–4098. 1 August, 2013

    Google Scholar 

  • Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88

    Google Scholar 

  • Shifriss C, Guri A (1979) Variation in stability of cytoplasmic genic male sterility in Capsicum frutescens L. J Am Soc Hortic Sci 1044:94–96

    Google Scholar 

  • Shifriss C, Pilovsky M (1993) Digenic nature of male sterility in pepper (Capsicum annuum L.). Euphytica 67:111–112

    Google Scholar 

  • Shifriss C, Pilovsky M, Zack JM (1992) Resistance to Leveillula taurica mildew (Oidiopsis taurica) in Capsicum annuum L. In: VIIIth Eucarpia meeting on genetics and breeding on capsicum and eggplant, Rome, pp 172–177

    Google Scholar 

  • Sibi M, Dumas de Vaulx R, Chambonnet D (1979) Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann Amélior Plantes 29:583–606. (French)

    Google Scholar 

  • Sudha A, Lakshmanan P (2009) Integrated disease management of powdery mildew (Leveillula taurica (Lev.) Arn.) of chilli (Capsicum annuum L.). Arch Phytopathol Plant Protect 42:299–317. https://doi.org/10.1080/03235400601037198

    Article  CAS  Google Scholar 

  • Sood S, Kumar N (2010) Heterosis for fruit yield and related horticultural traits in bell pepper. Intern J. Veg. Sci., 16:361–373

    Google Scholar 

  • Sugita T, Yamaguchi K, Kinoshita T, Yuji K, Sugimura Y, Nagata R et al (2006) QTL analysis for resistance to Phytophthora blight (Phytophthora capsici Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. 56:137–145. https://doi.org/10.1270/jsbbs.56.13

  • Sun CY, Mao SL, Zhang ZH, Palloix A, Wang LH, Zhang BX (2015) Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hortic 181:81–88. https://doi.org/10.1016/j.scienta.2014.10.033

    Article  CAS  Google Scholar 

  • Sujiprihati S, Yunianti R, Syukur M, Undang (2007). Pendugaan nilai heterosis dan daya gabung beberapa komponen hasil pada persilangan dialel penuh enam genotipe cabai (Capsicum annuum L.). Bul Agron. 35:28–35.

    Google Scholar 

  • Supena EDJ, Custers JBM (2011) Refinement of shed-microspore culture protocol to increase normal embryos production in hot pepper (Capsicum annuum L.). Sci Hortic 130:769–774

    Google Scholar 

  • Supena EDJ, Muswita W, Suharsono S, Custers JBM (2006a) Evaluation of crucial factors for implementing shedmicrospore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Sci Hortic 107(3):226–232

    Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006b) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    CAS  PubMed  Google Scholar 

  • Suwor P, Thummabenjapone P, Sanitchon J, Kumar S, Techawongstien S (2015) Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen (Colletotrichum spp.). Eur J Plant Pathol 143:725–736. https://doi.org/10.1007/s10658-015-0723-7

    Article  CAS  Google Scholar 

  • Sy O, Steiner R, Bosland PW (2005) Inheritance of Phytophthora stem blight resistance as compared to Phytophthora root rot and Phytophthora foliar blight resistance in Capsicum annuum L. 130:75–78

    Google Scholar 

  • Sztangret J (1998) Male sterility in hybrid seed production of sweet pepper (Capsicum annuum L.). MSc Thesis, Journal of the American Society for Horticultural Science Warsaw University of Life Sciences, Warsaw (in Polish), Journal of the American Society for Horticultural Science

    Google Scholar 

  • Tai SF, Huang HY, Lin CH, Tseng MJ, Chang WN (2004) Studies on the graft compatibility of pepper scions grafted onto eggplant rootstocks. Research Bulletin of KDARES 15:40.

    Google Scholar 

  • Taller J, Hirata Y, Yagishita N, Kita M, Ogata S (1998) Graft-induced genetic changes and the inheritance of several characteristics in pepper (Capsicum annuum L.). Theor Appl Genet 97:705–713

    CAS  Google Scholar 

  • Taller J, Yagishita N, Hirata Y (1999) Graft-induced variants as a source of novel characteristics in the breeding of pepper (Capsicum annuum L.). Euphytica 108:73–78. 476

    Google Scholar 

  • Tanaka Y, Yoneda H, Hosokawa M, Miwa T, Yazawa S (2014) Application of marker-assisted selection in breeding of a new fresh pepper cultivar (Capsicum annuum) containing capsinoids, low-pungent capsaicinoid analogs. Sci Hortic 165:242–245

    CAS  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Legebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485. https://doi.org/10.1007/s00122-003-1206-3

    Article  CAS  PubMed  Google Scholar 

  • Thabuis A, Palloix A, Servin B, Daubèze AM, Signoret P, Hospital F, Lefebvre V (2004a) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20. https://doi.org/10.1023/B:MOLB.0000037991.38278.82

    Article  CAS  Google Scholar 

  • Thabuis A, Lefebvre V, Bernard G, Daubeze AM, Phaly T, Pochard E et al (2004b) Phenotypic and molecular evaluation of a recurrent selection program from a polygenic resistance to Phytophthora capsici in pepper. Theoret Appl Genet 109:342–351

    CAS  Google Scholar 

  • Than PP, Prihastuti H, Phoulivong S, Taylor PWJ, Hyde KD (2008) Chili anthracnose disease caused by Colletotrichum species. J Zhejiang Univ Sci B 9:764–778. https://doi.org/10.1631/jzus.B0860007

    Article  PubMed  PubMed Central  Google Scholar 

  • Thies JA, Fery RL (2000) Heat stability of resistance to Meloidogyne incognita in Scotch Bonnet peppers (Capsicum chinense Jacq.). J Nematol 32:356–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci U S A 97:11192–11197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truong HTH, Kim KT, Kim DW, Kim S, Chase Y, Park JH et al (2012) Identification of isolate-specific resistance QTLs to Phytophthora root rot using an intraspecific recombinant inbred line population of pepper (Capsicum annuum). Plant Pathol 61:48–56. https://doi.org/10.1111/j.1365-3059.2011.02483.x

    Article  CAS  Google Scholar 

  • Tsaballa A, Athanasiadis C, Pasentsis K, Ganopoulos I, Nianiou-Obeidat I, Tsaftaris A (2013) Molecular studies of inheritable grafting induced change in pepper (Capsicum annuum) fruit shape. Scientia Hort 149:2–8

    Google Scholar 

  • Ullassa BA, Rawal RD, Sohi HS, Sing DP (1981) Reaction of sweet pepper genotypes to anthracnose leaf spot and powdery mildew. Plant Dis 65:600–601. https://doi.org/10.1094/PD-65-600

    Article  Google Scholar 

  • Valera-Montero LL, Ochoa-Alejo N (1991) A novel approach for chilli pepper (Capsicum annuum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci 84:215–219

    Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya L, Groenwold R (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annum and C. chinense. Theor Appl Genet 109:1275–1282. https://doi.org/10.1007/s00122-004-1738-1

    Article  PubMed  Google Scholar 

  • Vižintin L, Bohanec B (2004) In vitro manipulation of cucumber (Cucumis sativus L.). Acta Biol Cracoviensia Ser Bot 46:177–183

    Google Scholar 

  • Vinod KS, Shailaja P, Sharma BB (2013) Heterosis studies for earliness, fruit yield and yield attributing traits in bell pepper.African Journal of Agricultural Research 8(29): 4088–4098

    Google Scholar 

  • Walker SJ, Bosland PW (1999) Inheritance of Phytophthora root rot and foliar blight resistance in pepper. 124:14–18. https://doi.org/10.1094/PHYTO-09-12-0242-R

  • Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187

    CAS  Google Scholar 

  • Wang YY, Sun CS, Wang CC, Chien NJ (1973) The induction of pollen plantlets of Triticale and Capsicum annuum anther culture. Sci Sinica 16:147–151

    Google Scholar 

  • Wang Y, Yang M, Pan N, Chen Z (1991) Plant regeneration and transformation of sweet pepper (Capsicum frutescens). Acta Bot Sin 33:780–786

    Google Scholar 

  • Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubèze AM, Palloix A (2004) Qtl analysis of fertility restoration in cytoplasmic male sterile pepper. Theor Appl Genet 109:1058–1063

    CAS  PubMed  Google Scholar 

  • Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FN, Eannetta NT, Xu YM, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    CAS  PubMed  Google Scholar 

  • Yagishita N, Hirata Y (1987) Graft-induced changes in fruit shape in Capsicum annuum L. 1. Genetic analysis by crossing. Euphytica 36:809–814

    Google Scholar 

  • Yagishita N, Hirata Y, Okochi K, Mimura K, Mizukami H, Ohashi H (1985) Characterization of graft-induced change in capsaicin content of Capsicum annuum L. Euphytica 34:297–301

    Google Scholar 

  • Yagishita N, Hirata Y, Mizukami H, Ohashi H, Yamashita K (1990) Genetic nature of low capsaicin content in the variant strains induced by grafting in Capsicum annuum L. Euphytica 46:249–252

    Google Scholar 

  • Yazawa S, Kenmi T, Uemura N, Adachi K, Takashima S (1980) Use of interspecific hybrids of Capsicum as rootstocks for green pepper growing. Sci Rep Kyoto Prefecture 32:25–29

    Google Scholar 

  • Zecevic B (1997). Heterosis effect on some cultivar hybrids of pepper (Capsicum annuum L.). Review of research work at Faculty of Agriculture (Yugoslavia) 42(1):169-181-64

    Google Scholar 

  • Zhang BX, Huang SW, Yang GM, Guo JZ (2000) Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113:155–161

    CAS  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    CAS  PubMed  Google Scholar 

  • Zhu Y-X, Ou-Yang W-J, Zhang Y-F, Chen Z-L (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75

    CAS  PubMed  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTL mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, V.K., Srivastava, A., Mangal, M. (2020). Recent Trends in Sweet Pepper Breeding. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_16

Download citation

Publish with us

Policies and ethics