Skip to main content

Accelerated Breeding in Okra

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Okra is a nutrient-rich important crop with commercial value in tropical and subtropical regions of the world. Despite huge variation due to vast number of genotypes within Abelmoschus esculentus and occurrence of more wild relatives, improvement in okra is slow because of various barriers such as no compatible good source of resistance against diseases like yellow vein mosaic virus (YVMV), enation leaf curl virus (ELCV) and fruit borer; polyploidy; difficulties in DNA isolation; and nonavailability of proper genetic markers. The ever-growing population of the globe and increasing health consciousness among the people are putting more pressure for developing the high-yielding nutrient-rich, pest and disease resistance varieties at quicker pace. Hence, there is need for taking accelerated breeding or speed breeding in okra to achieve these goals. In this chapter, below, the possible ways for speeding up of the okra breeding programme are discussed. Early flowering, double haploids, early multilocation trials and marker-assisted selection help in speeding up of the conventional breeding in okra, while nonconventional methods like mutation breeding and genetic engineering result in the development of varieties within shorter period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham V, Bhatia CR (1984) Induced mutation in okra (A. esculentus). Mutation breed. Newsletter 24:1–3

    Google Scholar 

  • Acharya UK (2004) Thesis submitted to the Tribhuvan University, Institute of Agriculture and Animal Science Rampur, Chitwan, Nepal for the degree of master of science in agriculture (horticulture)

    Google Scholar 

  • Ahmed N, Nawaz S, Iqbal A, Mubin M, Butt A, Lightfoot DA et al (2013) Extraction of high-quality intact DNA from okra leaves despite their high content of mucilaginous acidic polysaccharides. BIOSCI Methods 4:19–22

    Google Scholar 

  • Aljanabi SM, Forget L, Dookun A (1999) An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA. Plant Molecular Biology Reports 17:281

    Google Scholar 

  • Anisuzzaman M, Jarin S, Naher K, Akhtar MM, Alam MJ, Khalekuzzaman M, Alam I, Alam MF (2008) Callus induced organogenesis in okra (Abelmoschus esculents L. Moench.). Asian J Plant Sci 7:677–681

    CAS  Google Scholar 

  • Arora SK, Dhankar BS (1992) Effect of seed soaking and foliar spray of cycocel on germination, growth, flowering, fruit set and yield of okra (Abelmoschus esculentus L. Moench). Veg Sci 19(1):79–85

    Google Scholar 

  • Ashadevi R, Koundinya AVV, Chattopadhyay SB (2017) An estimation of effective mutagen doses, induced genetic variation and characters association in M2 generation of okra. Int J Curr Microbiol App Sci 6(5):2209–2219

    CAS  Google Scholar 

  • Baghery MA, Kazemitabar SK (2014) Effect of EMS induction on some morphological traits of okra (Abelmoschus esculentus (L.) Moench). International Journal of Biosciences 5(9):340–345

    Google Scholar 

  • Bajaj YPS (1983) In vitro production of haploids. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. Macmillan, New York, pp 228–287

    Google Scholar 

  • Comeau A, Caetand VR, St-Pierre CA, Haber S (2001) Accelerated breeding: dream or reality? In: Bedii Z, Lang L (eds) Wheat in a global environment. Kluwer Academic Publishers, pp 671–679

    Google Scholar 

  • Dalve PD, Musmade AM, Mane SV, Nimbalkar RR (2010) Response of okra to gamma rays and EMS in M1 generation. The Asian Journal of Horticulture 4(2):398–400

    Google Scholar 

  • Dalve PD, Musmade AM, Patil RS, Bhalekar MN, Kute NS (2012) Selection for resistance to yellow vein mosaic virus disease of okra by induced mutation. Bioinfolet 9(4B):822–823

    Google Scholar 

  • Dhande GA, Patil VM, Raut RV, Rajput JC, Ingle AG (2012) Regeneration of okra (Abelmoschus esculentus) via apical shoot culture system. Afr J Biotechnol 11:15226–15230

    Google Scholar 

  • Dhankhar BS, Mishra JP (2004) Objectives of okra breeding. In: Singh PS, Dasgupta SK, Tripathi SK (eds) Hybrid vegetable development. Food Products Press, New York, USA. pp 195–209

    Google Scholar 

  • Dhankhar SK, Dhankhar BS, Yadav RK (2005) Inheritance of resistance to yellow vein mosaic virus in an interspecific cross of okra (Abelmoschus esculentus). Indian J Agric Sci 75(2):87–89

    Google Scholar 

  • Dubey AK, Yadav JR, Singh B (2007) Studies on induced mutations by gamma irradiation in okra. [Abelmoschus esculentus (L.) Moench]. Progress Agric 7(1/2):46–48

    Google Scholar 

  • Fatokun CA, Aken Orea ME, Chheda HR (1979) Supernumerary inflorescence-a mutation of agronomic significance in okra. J Hered 70:270–271

    Google Scholar 

  • Forster BP, Till BJ, Ghanim AMA, Huynh HOA, Burstmayr H, Caligari PDS (2014) Accelerated plant breeding. CAB Rev 9:1–16

    Google Scholar 

  • Ganesan M, Chandrasekar R, Ranjitha Kumari BD, Jayabalan N (2007) Somatic embryogenesis and plant regeneration of Abelmoschus esculentus through suspension culture. Biol Plant 51(3):414–420

    CAS  Google Scholar 

  • Gruenheit N, Deusch O, Esser C, Becker M, Voelckel C, Lockhart PJ (2012) Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants. BMC Genomics 13:92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haider SA, Islam R, Kamal AHM, Rahman SM, Joarder OI (1993) Direct and indirect organogenesis in cultured hypocotyl explants of Abelmoschus esculentus (L.) Moench. Plant Tissue Cult 3:85–89

    Google Scholar 

  • Hamon S, Charrier A (2001) Okra. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Oxford and IBH pvt. Ltd., Calcutta, pp 361–380

    Google Scholar 

  • Hegazi AZ, Hamideldin N (2010) The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. Journal of Horticulture and Forestry 2(3):038–051

    Google Scholar 

  • Hu H (1985) Use of haploids in crop improvement. In: Biotechnology in international agricultural research. In: Proceedings of the inter-center seminar on international agricultural centers (IARCs) and biotechnology, 23–27 Apr 1984. IRRI, Manila, pp 75–84

    Google Scholar 

  • Ibrahim AM (2016) Haploid induction of kenaf (Hibiscus cannabinus L.), okra (Abelmoschus esculentus L.) And spring onion (Allium fistulosum L.) using anther, ovary and ovule cultures faculty of agro based industry. Thesis submitted to the Universiti Malaysia Kelantan for the degree of Doctor of Philosophy

    Google Scholar 

  • Jadhav PA, Kalpande HV, Arbad SK, Mali AR (2013) Induced mutagenesis in okra [Abelmoschus esculentus (L.) Moench] by gamma rays and ethyl methane sulphonate. Vegetable Science 40(2):223–224

    Google Scholar 

  • Jagajanantham N, Dhanavel D, Pavadai P, Chidambaram AA (2012) Growth and yield parameters using gamma rays in bhendi [Abelmoschus esculentus (L) Moench] var. Arka Anamika. International Journal of Research in Plant Science 2(4):56–58

    Google Scholar 

  • Jambhale ND, Nerkar YS (1979) Inheritance of chlorine and induced chlorophyll mutant in okra (Abelmoschus esculentus (L.) Moench). J Maharashtra Agric Univ 4(3):316

    Google Scholar 

  • Jambhale ND, Nerkar YS (1981) Inheritance of resistance to okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet 60:313–316

    CAS  PubMed  Google Scholar 

  • Jatav PK, Singh K, Mathapati G, Gowda R, Karoriya S, Nalla MK (2018) Breeding for virus resistance in okra. Int J Curr Microbiol App Sci 7(8):3053–3065

    CAS  Google Scholar 

  • Kabir AH, Sarker KK, Sharmin SA, Islam MS, Alam MF (2008) Callus induction and plantlet regeneration in Abelmoschus esculentus (L.) Moench. J Agric Technol 4:193–204

    Google Scholar 

  • Kashid NG (2016) Mutagenesis in hundred seed weight of okra (Abelmoschus esculentus L. Moench). Asian Journal of Multidisciplinary Studies 4(3):106–109

    Google Scholar 

  • Kashid NG, Khulte MP (2014) Effect of physical and chemical mutagens on pod length in okra (Abelmoschus esculentus L. Moench). Science Research and Report 4(2):151–154

    Google Scholar 

  • Koundinya A, Sidhya P, Pandit MK (2014) Impact of climate change on vegetable cultivation-a review. International Journal of Agriculture, Environment & Biotechnology 7(1):145–155

    Google Scholar 

  • Kulkarni UB, Nerkar YS (1992) ‘Parbhani Tillu’ an induced bhendi mutant suitable for fruit processing. Journal of Maharastra Agricultural University 17(3):496–497

    Google Scholar 

  • Kuwada H (1970) X ray induced mutation in okra. Technical bulletin of the faculty of agriculture. Kagawa University 21:2–8

    Google Scholar 

  • Mangat BS, Roy MK (1986) Tissue culture and plant regeneration of okra (Abelmoschus esculentus). Plant Sci 47:57–61

    CAS  Google Scholar 

  • Manickavasagam M, Subramanyam K, Ishwarya I, Elayaraja D, Ganapathi A (2015) Assessment of factors influencing the tissue culture independent Agrobacterium-mediated in planta genetic transformation of okra (Abelmoschus esculentus (L.) Moench). Plant Cell Tissue Organ Cult 123:309–320. https://doi.org/10.1007/s11240-015-0836-x

    Article  CAS  Google Scholar 

  • Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM (2017) Biotechnological advancements and Begomovirus Management in Okra (Abelmoschus esculentus): status and perspectives. Front Plant Sci 8:360

    PubMed  PubMed Central  Google Scholar 

  • Mishra MN, Qadri H, Mishra S (2007) Macro and micro mutations in okra [Abelmoschus esculentus (L.) Moench] by gamma rays and ethyl methane Sulphonate. Vegetable Science 29(1):30–33

    Google Scholar 

  • Narendran M, Shirale D, Parimi S, Deole SG, Nanote A, Char BR et al (2013) Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell Rep 32:1191–1198. https://doi.org/10.1007/s00299-0131415-4

    Article  CAS  PubMed  Google Scholar 

  • Nariani TK, Seth ML (1958) Reaction of Abelmoschus and Hibiscus species to yellow vein mosaic virus. Indian Phytopathology 11:137–140

    Google Scholar 

  • Pal BP, Singh HB, Swarup V (1952) Taxonomic relationships and breeding possibilities of species of Abelmoschus related to okra. Bot Gaz 113:455–464

    Google Scholar 

  • Patil S, Bagde E, Tatte R, Mane SS, Naik RM, Gawande PP, Jadhav PV (2018) Characterization of okra genotypes by molecular markers against yellow vein mosaic virus. Int J Chem Stud 6(5):2809–2812

    Google Scholar 

  • Pauls KP (1995) Plant biotechnology for crop improvement. Biotechnol Adv 13:673–693

    CAS  PubMed  Google Scholar 

  • Phadvibulya V, Boonsirichai K, Adthalungrong A, Srithongchai W (2009) Selection for resistance to yellow vein mosaic virus disease of okra by induced mutation. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and agriculture organization of the United Nations, Rome, pp 349–351

    Google Scholar 

  • Phadvibulya V, Puripanyavanich V, Adthalungrong A, Kittipakorn K, Lavapaurya T (2004) Induced mutation breeding for resistance to yellow vein mosaic virus in okra. In: Proceedings of a final research coordination meeting organized by the joint FAO/IAEA division of nuclear techniques in food and agriculture, Pretoria, 19–23 May 2003, pp 155–175

    Google Scholar 

  • Rajamony L, Chandran M, Rajmohan K (2006) In vitro embryo rescue of interspecific crosses for transferring virus resistance in okra (Abelmoschus esculentus (L.) Moench). In: Fári MG, Holb I, Bisztray GYD (eds) Proceedings of Vth IS on in vitro culture and horticultural breeding. Acta horticulturae, p 725

    Google Scholar 

  • Randers JA (2012) Global forecast for the next forty years 2052. Chelsea Green Publishing, White River Junction, pp 62–159

    Google Scholar 

  • Reddy PS, Dhaduk LK (2014) Induction of genetic variability in okra [Abelmoschus esculentus (L.) Moench] by gamma and EMS. Electronic Journal of Plant Breeding 5(3):588–593

    Google Scholar 

  • Rekha Rani M (2007) Standardization of protocol for regeneration and genetic transformation of okra (Abelmoschus esculentus [L.] Moench). Thesis submitted to the Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad for the degree of Master of Science (Agricultural Biotechnology)

    Google Scholar 

  • Sahu SK, Thangaraj M, Kathiresan K (2012) DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. Mol Biol 1:1–1: 6

    Google Scholar 

  • Sanodiya K, Pandey G, Kacholli P, Dubey AK (2017) Effect of growth regulator on growth, yield and seed quality parameters of okra (Abelmoschus esculentus L.): cv. Utkal Gaurav. Int J Curr Microbiol App Sci 6(10):3551–3556

    Google Scholar 

  • Sastry KS, Zitter TA (2014) Management of virus and viroid diseases of crops in the tropics. In: Plant virus and viroid diseases in the tropics Vol. 2: epidemiology and management. Springer, Netherlands, pp 149–480

    Google Scholar 

  • Shanna DR, Arora SK (1991) Mutation breeding in okra. In: Goldcn Jubilee symposium on genetic research and education: current trends and next 50 years. February 12–15, 1991 New Delhi

    Google Scholar 

  • Sharma BR, Sharma OP, Bansal RD (1987) Influence of temperature on incidence of yellow vein mosaic virus in okra. Vegetable Science 14:65–69

    Google Scholar 

  • Sharma BK, Mishra MN (2007) Micro-mutations for fruit number, fruit length and fruit yield characters in gamma-irradiated generation of ANKUR-40 variety of okra. [Abelmoschus esculentus (L.) Monech]. International Journal of Plant Science 2:208–211

    Google Scholar 

  • Sharma BR, Arora SK (1990) Advances in breeding of okra [Abelmoschus esculentus (L) Moench] in India. Mutation breeding newsletter No 35, International Atomic Energy Agency. Pp 44

    Google Scholar 

  • Shetty AA, Singh JP, Singh D (2013) Resistance to yellow vein mosaic virus in okra: a review. Biol Agric Hortic Int J Sustain Prod Syst 29(3):159–164. https://doi.org/10.1080/01448765.2013.793165

    Article  Google Scholar 

  • Singh AK, Singh KP (2000) Seedling injury, reduced pollen and ovule fertility and chlorophyll mutations induced by gamma rays and EMS in okra. Vegetable Science 27:42–44

    Google Scholar 

  • Singh AK, Singh KP (2002) Induced mutation in okra (Abelmoschus esculentus (L). Moench) by gamma rays and ethyl methane sulphonate. Vegetable Science 29(1):30–33

    Google Scholar 

  • Singh AK, Singh KP (2004) Induced quantitative variation for yield and its components in okra. [Abelmoschus esculentus (L.) Moench]. Indian Journal of Horticulture 61(3):240–244

    Google Scholar 

  • Singh AK, Singh KP, Singh VP (1998) Genetic analysis of induced mutants of okra. [Abelmoschus esculentus (L) moench]. Vegetable Science 25(2):174–177

    Google Scholar 

  • Singh HB, Joshi BS, Khanna PP, Gupta PS (1962) Breeding for field resistance to yellow vein mosaic in bhindi. Indian Journal of Genetics and Plant Breeding 22:137–144

    Google Scholar 

  • Singh B, Rai M, Kalloo G, Satpathy S, Pandey KK (2007) Wild taxa of okra (Abelmoschus species): reservoir of genes for resistance to biotic stresses. Acta Hortic 752:323–328

    Google Scholar 

  • Singh DR, Singh PK, Syamal MM, Gautam SS (2009) Studies on combining ability in okra. Indian J Hortic 66(2):277–280

    Google Scholar 

  • Suryakumari S (2002) Induced polygenic mutations in okra [Abelmoschus esculentus (L.) Moench]. South Indian Horticulture 50:533–537

    Google Scholar 

  • Thakur MR (1976) Inheritance of yellow vein mosaic in a cross of okra species, Abelmoschus esculentus and A. manihot ssp. manihot. SABRAO Journal of Breeding and Genetics 8:69–73

    Google Scholar 

  • Warghat AR, Rampure NH, Wagh P (2011) Effect of sodium azide and gamma rays treatments on percentage germination, survival, morphological variation and chlorophyll mutation in musk okra (Abelmoschus moschatus L.). Int J Pharm Pharm Sci 3(5):483–486

    CAS  Google Scholar 

  • Watson A, Ghosh S, Williams MJ (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4(1):23–29

    PubMed  Google Scholar 

  • Yadav Y, Maurya PK, Devi AP, Jamir I, Bhattacharjee T, Banerjee S, Dutta S, Debnath D, Mandal AK, Dutta S, Chattopadhyay A (2018) Enation leaf curl virus (ELCV): a real threat in major okra production belts of India: a review. J Pharmacogn Phytochem 7(2):3795–3802

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhankhar, S.K., Koundinya, A.V.V. (2020). Accelerated Breeding in Okra. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_12

Download citation

Publish with us

Policies and ethics