Skip to main content

Breeding Strategies for Yield Gains in Okra (Abelmoschus esculentus L.)

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

In okra, we follow the breeding methodologies of autogamous plants. This includes crossing or controlled hybridization of parents selected based on their better-combining abilities. This is followed by the pedigree selection of the segregating population for the traits of interest like biotic and abiotic stress tolerance and yield. The major breeding objectives are nearly the same across all the okra-growing countries: high yield, tolerance to various pests and diseases, better organoleptic qualities, appealing color and size of the harvestable fruits. Hand pollination is the most commonly used method of hybrid seed production in okra and improving yield and ensuring its sustainability under adverse conditions through resistant hybrids is the major objective of heterosis breeding. Sufficient genetic diversity has been reported among the parents and crosses for selection to be effective for okra hybrid production. Although both additive and dominant gene actions were found regulating the phenotypic expression of various characters, dominant gene action is considered more important. Through intensive research efforts, a large number of varieties and hybrids have been released around the world. Some of these varieties have already made a significant impact in revolutionizing the production of okra worldwide. This chapter summarizes the current status of okra crop production and its future improvement strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmageed AHA (2010) Inheritance studies of some economic characters in okra (Abelmoschus esculentus (L.) Moench). Trop Subtrop Agroecosyst 12:619–627

    Google Scholar 

  • Abewoy D (2018) Review on impacts of climate change on vegetable production and its management practices. Adv Crop Sci Technol 6:1. https://doi.org/10.4172/2329-8863.1000330

    Article  Google Scholar 

  • Adiger S, Sridevi O (2014) Isolation of DNA from mucilage-rich okra (Abelmoschus esculentus L.) for PCR analysis. Trends Biosci 7(16):2306–2309

    Google Scholar 

  • Adiger S, Shanthakumar G, Salimath PM (2013) Selection of parents based on combining ability studies in okra [Abelmoschus esculentus (L.) Moench]. Karnataka J Agric Sci 26(1):6–9

    Google Scholar 

  • Ahmed N, Nawaz S, Iqbal A et al (2013) Extraction of high-quality intact DNA from okra leaves despite their high content of mucilaginous acidic polysaccharides. Biosci Meth 4(4):19–22

    Google Scholar 

  • Akanbi WB, Togun AO, Adeliran JA, Ilupeju EAO (2010) Growth dry matter and fruit yields components of okra under organic and inorganic sources of nutrients. Am Eurasian J Sustain Agric 4:1–13

    Google Scholar 

  • Akash MW, Shiyab SM, Saleh MI (2013) Yield and AFLP analyses of inter-landrace variability in okra (Abelmoschus esculentus L.). Life Sci J 10(2):2771–2779

    Google Scholar 

  • Akinyele BO, Temikotan T (2007) Effect of variation in soil texture on the vegetative and pod characteristics of okra (Abelmoschus esculentus (L.) Moench). Int J Agric Res 2:165–169

    Article  Google Scholar 

  • Aladele SE, Ariyo OJ, Pena RDL (2008) Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. Afr J Biotechnol 7:1426–1431

    CAS  Google Scholar 

  • Amin IM (2011) Nutritional properties of Abelmoschus esculentus as remedy to manage Diabetes mellitus: a literature review. In: International conference on biomedical engineering and technology, vol 11. IACSIT Press, Singapore, pp 50–54

    Google Scholar 

  • Anisuzzaman M, Jarin IS, Naher K et al (2008) Callus induced organogenesis in okra (Abelmoschus esculents L. Moench.). Asian J Plant Sci 7(7):677–681

    Article  CAS  Google Scholar 

  • Anonymous (2017) ICAR–IIVR, annual report 2016–17. ICAR–Indian Institute of Vegetable Research, Varanasi

    Google Scholar 

  • Arora D, Jindal SK, Singh K (2008) Genetics of resistance to yellow vein mosaic virus in inter–varietal crosses of okra (Abelmoschus esculentus L. Moench). SABRAO J Breed Genet 40(2):93–103

    Google Scholar 

  • Bali SS, Narayan R, Ahmed N (2004) Genetic variability in okra. Udyanika 10(4):33–35

    Google Scholar 

  • Benchasri S (2011) Screening for yellow vein mosaic virus resistance and yield loss of okra under field conditions in Southern Thailand. J Anim Plant Sci 12(3):1676–1686

    Google Scholar 

  • Bharathkumar MV, Dhankhar SK, Dahiya MS, Srikanth M (2019) Genetic architecture of resistance to yellow vein mosaic virus disease in advance lines of okra (Abelmoschus esculentus). Indian J Agric Sci 89(4):640–645

    CAS  Google Scholar 

  • Bisht IS, Bhat KV (2007) Okra (Abelmoschus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement: vegetable crops, vol 3. CRC Press, Boca Raton/London. https://doi.org/10.1201/9781420009569

    Chapter  Google Scholar 

  • Bisht IS, Mahajan RK, Rana RS (1995) Genetic diversity in South Asia okra (A. esculentus) germplasm collection. Ann Appl Biol 126:539–550

    Article  Google Scholar 

  • Bosamia TC, Mishra GP, Radhakrishnan T et al (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10(6):e0129127. https://doi.org/10.1371/journal.pone.0129127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Chattopadhyay A, Dutta S et al (2013) Breeding okra for higher productivity and yellow vein mosaic tolerance. Int J Veg Sci 19:58–77

    Article  Google Scholar 

  • Datta PC, Naug A (1968) A few strains of Abelmoschus esculentus (L.) Moench their karyology in relation to phylogeny and organ development. Beitr Biol Pflanzen 45:113–126

    Google Scholar 

  • Dhankar SK (2012) Genetic improvement of adopted okra cultivars for YVMV disease resistance involving wild relatives in genus Abelmoschus. In: Proceedings of the regional symposium on high value vegetables in Southeast Asia: production, supply and demand. Thailand. AVRDC-The World Vegetable Center, Publication no. 12, pp 56–60

    Google Scholar 

  • Dhankar BS, Dhankar SK (2002) Genetic variability, correlation and path analysis in okra (Abelmoschus esculentus (L.) Moench). Veg Sci 29(1):63–65

    Google Scholar 

  • Dhankhar SK, Dhankhar BS, Yadava RK (2005) Inheritance of resistance to yellow vein mosaic virus in an inter-specific cross of okra (Abelmoschus esculentus). Indian J Agric Sci 75:87–89

    Google Scholar 

  • Dutta OP (1980) Male sterility in okra [Abelmoschus esculentus (L.) Moench.] and bottle gourd [Lagenaria siceraria (Mol.) Standl.] and utilization in hybrid seed production. PhD thesis, UAS, Bangalore

    Google Scholar 

  • Duzyaman E (1997) Okra: botany and horticulture. In: Janick J (ed) Horticultural reviews 29. Wiley, New York, pp 41–72. https://doi.org/10.1002/9780470650660.ch2

    Chapter  Google Scholar 

  • Duzyaman E, Vural H (2003) Evaluation of pod characteristics and nutritive value of okra genetic resources. Acta Hortic 598:103–110

    Article  Google Scholar 

  • Erickson HT, Couto FAA (1963) Inheritance of four plant and floral characters in okra (Hibiscus esculentus L.). Proc Am Soc Hortic Sci 83:605–608

    Google Scholar 

  • FAOSTAT (2018). http://faostat.fao.org/. Accessed 1 Aug 2019

  • Ford CE (1938) A contribution to a cytogenetical survey of the Malvaceae. Genetica 20:431–452

    Article  Google Scholar 

  • Fougat RS, Purohit AR, Kumar S et al (2015) SSR based genetic diversity in Abelmoschus species. Indian J Agric Sci 85(9):1223–1228

    CAS  Google Scholar 

  • Ganesan M, Chandrasekar R, Kumari BDR et al (2007) Somatic embryogenesis and plant regeneration of Abelmoschus esculentus through suspension culture. Biol Plant 51:414–420

    Article  CAS  Google Scholar 

  • Gulsen O, Karagul S, Abak K (2007) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biol Bratislava 62:41–45

    Article  CAS  Google Scholar 

  • Gupta N, Sood S (2019) Induction of morphological mutations in okra (Abelmoschus esculentus L.) through gamma rays and EMS. J Pharmacogn Phytochem SP1:74–76

    Google Scholar 

  • Haider SA, Islam R, Kamal AHM et al (1993) Direct and indirect organogenesis in cultured hypocotyl explants of Abelmoschus esculentus (L.) Moench. Plant Tissue Cult 3:85–89

    Google Scholar 

  • Haq IU, Khan AA, Azmat MA (2013) Assessment of genetic diversity in okra (Abelmoschus esculentus L.) using RAPD markers. Pak J Agric Sci 50(4):655–662

    Google Scholar 

  • Hughes J (2009) Just famine foods? What contribution can underutilized plant make to food security? Acta Hortic 806:39–47

    Article  Google Scholar 

  • IBPGR (1990) International Board for Plant Genetic Resources – Report on International Workshop on Okra Genetic resources held at the National bureau for Plant Genetic Resources, New Delhi, India

    Google Scholar 

  • IBPGR (1991) International Crop Network Series-5. Report of an International Workshop on Okra Genetic Resources, International Board for Plant Genetic Resources, Rome, Italy

    Google Scholar 

  • Jagan K, Reddy RK, Sujatha M et al (2013) Heterosis for yield and yield components in okra (Abelmoschus esculentus L.). IOSR J Pharm Biol Sci 7(4):69–70

    Google Scholar 

  • Jambhale ND, Nerker YS (1981) Inheritance of resistance to okra yellow vein mosaic disease in inter–specific crosses of Abelmoschus. Theor Appl Genet 60:313–316

    Article  CAS  PubMed  Google Scholar 

  • Jasim AJ, Fontnet JF (1967) Inheritance of certain characters in okra (H. esculentus L.). Diss Abstr Sect 28(1):211

    Google Scholar 

  • Jenkins DJA, Kendall CWC, Marchie A et al (2005) Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr 81:380–387

    Article  CAS  PubMed  Google Scholar 

  • Jindal SK, Arora D, Ghai TR (2009) Heterobeltiosis and combining ability for earliness in okra (Abelmoschus esculentus (L.) Moench). Crop Improv 36(2):59–66

    Google Scholar 

  • Kalia HR, Padda DS (1962) Inheritance of some fruit characters in okra. Indian J Genet Plant Breed 22(3):252–254

    Google Scholar 

  • Kaur K, Pathak M, Kaur S et al (2013) Assessment of morphological and molecular diversity among okra [Abelmoschus esculentus (L.) Moench.]. Germplasm 12(21):3160–3170

    CAS  Google Scholar 

  • Kerure P, Pitchaimuthu M, Srinivasa V, Venugopalan R (2019) Heterosis for yield and its components in okra (Abelmoschus esculentus L. Moench). Int J Curr Microbiol App Sci 8(1):353–367. https://doi.org/10.20546/ijcmas.2019.801.036

    Article  Google Scholar 

  • Khanpara MD, Jivani LL, Vachhani JH et al (2009) Line x tester analysis for combining ability in okra [Abelmoschus esculentus (L.) Moench]. Int J Agric Sci 5(2):554–557

    Google Scholar 

  • Khanuja SP, Shasany AK, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:1–7

    Article  Google Scholar 

  • Kishor DS, Duggi S, Arya K, Magadum S (2013) Combining ability studies in okra [Abelmoschus esculentus (L.) Moench]. Bioinfolet 10(2A):490–494

    Google Scholar 

  • Kochko A, Hamon S (1990) A rapid and efficient method for the isolation of restrictable total DNA from plants of the genus Abelmoschus. Plant Mol Biol Rep 8:3–7

    Article  Google Scholar 

  • Kolhe AK, D’Cruz R (1966) Inheritance of pigmentation in okra. Indian J Genet Plant Breed 23:112

    Google Scholar 

  • Kumar R, Yadav JR, Tripathi P, Tiwari SK (2005) Evaluating genotypes for combining ability through diallel analysis in okra. Indian J Hortic 62:89–90

    Google Scholar 

  • Kumar A, Baranwal DK, Aparna J, Srivastava K (2013) Combining ability and heterosis for yield and its contributing characters in okra (Abelmoschus esculentus (L.) Moench). Madras Agric J 100:30–35

    Google Scholar 

  • Kumar M, Sharma VR, Kumar N et al (2017) Screening of microsatellite markers for genetic diversity assessment and conservation of germplasm in okra (Abelmoschus esculentus L. Moench). Int J Curr Microbiol App Sci 6:509–520. https://doi.org/10.20546/ijcmas.2017.606.060

    Article  CAS  Google Scholar 

  • Kyriakopoulou OG, Arens P, Pelgrom KTB et al (2014) Genetic and morphological diversity of okra (Abelmoschus esculentus [L.] Moench.) genotypes and their possible relationships, with particular reference to Greek landraces. Sci Hortic 171:58–70

    Article  Google Scholar 

  • Lamont WJJ (1999) Okra–A versatile vegetable crop. HortTechnology 9:179–188

    Article  Google Scholar 

  • Mangat BS, Roy MK (1986) Tissue culture and plant regeneration of okra (Abelmoschus esculentus). Plant Sci 47:57–61

    Article  CAS  Google Scholar 

  • Martinello GE, Leal NR, Amaral JAT et al (2001) Comparison of morphological characteristics and RAPD for estimating genetic diversity in Abelmoschus spp. Acta Hortic 546:101–104

    Article  CAS  Google Scholar 

  • Martinello GE, Leal NR, Amaral AT Jr et al (2003) Diversidade genética em quiabeiro baseada em marcadores RAPD. Hortic Brasil 21(1):20–25

    Article  Google Scholar 

  • Martre P, Quilot-Turion B, Luquet D et al (2015) Model assisted phenotyping and ideotype design. In: Sadras V, Calderini D (eds) Crop physiology: applications for genetic improvement and agronomy. Academic, London, pp 349–373. https://doi.org/10.1016/B978-0-12-417104-6.00014-5

    Chapter  Google Scholar 

  • Meena RK, Chhatterjee T, Thakur S (2014) An efficient method of genomic DNA isolation from mucilage-rich okra leaves for molecular biology studies. Indian J Appl Res 4(1):57–59

    Article  Google Scholar 

  • Mishra GP, Singh RK, Mohapatra T et al (2001) Molecular mapping of a fertility restorer gene in basmati rice using microsatellite markers. Indian J Genet Plant Breed 61(4):348–349

    CAS  Google Scholar 

  • Mishra GP, Singh RK, Mohapatra T et al (2003) Molecular mapping of a gene for fertility restoration of wild abortive (WA) cytoplasmic male sterility using a basmati line restorer line. J Plant Biochem Biotechnol 12:37–42. https://doi.org/10.1007/BF03263157

    Article  CAS  Google Scholar 

  • Mishra GP, Singh B, Seth T et al (2017) Biotechnological advancements and begomovirus management in okra (Abelmoschus esculentus L.): status and perspectives. Front. Plant Sci 8(360). https://doi.org/10.3389/fpls.2017.00360

  • Moekchantuk T, Kumar P (2004) Export okra production in Thailand. Inter-country programme for vegetable IPM in South and SE Asia phase II Food and Agriculture Organization of the United Nations, Bangkok

    Google Scholar 

  • More SJ, Chaudhari KN, Vaidya GB, Chawla SL (2017) Estimation of hybrid vigour for fruit yield and quality traits of okra [Abelmoschus esculentus (L.) Moench] through line x tester analysis carried over environments. Int J Curr Microbiol App Sci 6(7):4101–4111. https://doi.org/10.20546/ijcmas.2017.607.425

    Article  Google Scholar 

  • Narendran M, Deole SG, Harkude S et al (2013) Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell Rep 32:1191–1198. https://doi.org/10.1007/s00299-013-1415-4

    Article  CAS  PubMed  Google Scholar 

  • Nath P, Dutta OP (1970) Inheritability of fruit hairiness, fruit skin color, and leaf lobing in okra, Abelmoschus esculentus. Can J Genet Cytol 12(l):589–593

    Article  Google Scholar 

  • Nwangburuka CC, Kehinde OB, Ojo DK et al (2011) Molecular characterization of twenty-nine okra accessions using the random amplified polymorphic DNA (RAPD) molecular marker. Acta SATECH 4(1):1–14

    Google Scholar 

  • Nwangburuka CC, Denton OA, Kehinde OB et al (2012) Genetic variability and heritability in cultivated okra [Abelmoschus esculentus (L.) Moench]. Span J Agric Res 10(1):123–129

    Article  Google Scholar 

  • Ouedraogo MH, Sawadogo N, Batieno TBJ et al (2018) Evaluation of genetic diversity of okra accessions [Abelmoschus esculentus (L. Moench)] cultivated in Burkina Faso using microsatellite markers. Afr J Biotechnol 17(5):126–132. https://doi.org/10.5897/AJB2017.16336

    Article  Google Scholar 

  • Oyetunde OA, Ariyo OJ (2014) Genetics of seed yield and related traits in biparental crosses of okra, Abelmoschus esculentus (L.) Moench. Niger J Genet 28:8–14

    Article  Google Scholar 

  • Patil P, Sutar S, Joseph JK et al (2015) A systematic review of the genus Abelmoschus (Malvaceae). Rheedea 25(1):14–30

    Google Scholar 

  • Patil S, Bagde E, Tatte R et al (2018) Characterization of okra genotypes by molecular markers against yellow vein mosaic virus. Int J Chem Stud 6(5):2809–2812

    Google Scholar 

  • Pitchaimuthu M, Dutta OP (2002) Combining ability using genetic male sterile lines in okra. In: International conference on vegetables, Bangalore, India

    Google Scholar 

  • Prabu T, Warade SD (2009) Biochemical basis of resistance to yellow vein mosaic virus in okra. Veg Sci 36(3):283–287

    Google Scholar 

  • Prakash K, Pitchaimuthu M, Ravishankar KV (2011) Assessment of genetic relatedness among okra genotypes [Abelmoschus esculentus (L.) Moench] using RAPD markers. Electron J Plant Breed 2(1):80–86

    Google Scholar 

  • Purewal SS, Randhawa GS (1947) Studies in Hibiscus esculentus (Lady’s Finger) chromosome and pollination studies. Indian J Agric Sci 17:129–136

    Google Scholar 

  • Purseglove JW (1984) Tropical crops. Dicotyledons. Longman, Harlow

    Google Scholar 

  • Quattrocchi U (2000) CRC world dictionary of plant names: common names, scientific names, eponyms, synonyms, and etymology. CRC Press/Taylor & Francis Group, Boca Raton/London

    Google Scholar 

  • Rajesh J, Prasad VM, Ranganna G (2019) Evaluation of okra [Abelmoschus esculentus (L.) Moench.] Hybrids for yield and economics under Allahabad agro-climatic condition. Int J Chem Stud 7(1):323–325

    CAS  Google Scholar 

  • Rawashdeh L (1999) Genetic variation among and within okra (Abelmoschus esculentus L.) landraces in Jordan. MSc. thesis University of Jordan, Amman, Jordan

    Google Scholar 

  • Reddy MA, Sridevi O, Salimath PM et al (2013a) Heterosis for yield and yield components in okra. Int J Adv Res 1(8):287–302

    Google Scholar 

  • Reddy MA, Sridevi O, Salimath PM, Nadaf HL (2013b) Combining ability for yield and yield components through diallel analysis in okra (Abelmoschus esculentus (L.) Moench). IOSR J Agric Vet Sci 5(2):1–6

    Article  Google Scholar 

  • Roy MK, Mangat BS (1989) Regeneration of plants from callus tissue of okra (Abelmoschus esculentus). Plant Sci 60:77–81

    Article  CAS  Google Scholar 

  • Saifullah M, Rabbani MG (2009) Evaluation and characterization of Okra (Abelmoschus esculentus (L.) Moench). SAARC J Agric 7:92–99

    Google Scholar 

  • Salameh NM (2014) Genetic diversity of okra (Abelmoschus esculentus L.) landraces from different agro–ecological regions revealed by AFLP analysis. Am Eur J Agric Environ Sci 14(2):155–160

    CAS  Google Scholar 

  • Sanwal SK, Singh M, Singh B, Naik PS (2014) Resistance to yellow vein mosaic virus and okra enation leaf curl virus: challenges and future strategies. Curr Sci 106:470–471

    Google Scholar 

  • Sastry KS, Zitter TA (2014) Management of virus and viroid diseases of crops in the tropics. In: Sastry KS, Zitter TA (eds) Plant virus and viroid diseases in the tropics. Springer, Dordrecht, pp 149–480. https://doi.org/10.1007/978-94-007-7820-72

    Chapter  Google Scholar 

  • Sawadogo M, Ouedraogo JT, Balma D et al (2009) The use of cross species SSR primers to study genetic diversity of okra from Burkina Faso. Afr J Biotechnol 8:2476–2482

    CAS  Google Scholar 

  • Schafleitner R, Kumar S, Lin CY et al (2013) The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis. Gene 517:27–36

    Article  CAS  PubMed  Google Scholar 

  • Seal SE, van den Bosch F, Jeger MJ (2006) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46

    Article  Google Scholar 

  • Seth T, Chattopadhyay A, Dutta S et al (2016a) Evidence of economic heterosis and genetic control of fruit yield and yellow vein mosaic virus disease severity traits of okra. Vegetos 29:3

    Article  Google Scholar 

  • Seth T, Chattopadhyay A, Chatterjee S et al (2016b) Selecting parental lines among cultivated and wild species of okra for hybridization aiming at YVMV disease resistance. J Agric Sci Technol 18:751–762

    Google Scholar 

  • Seth T, Ranjan JK, Singh B, Mishra GP (2016c) Promising genotypes: IC-117090: nine ridges okra accession. Veg News Lett 3(1):2–3

    Google Scholar 

  • Seth T, Chattopadhyay A, Dutta S et al (2017) Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica 213:30. https://doi.org/10.1007/s10681-016-1789-9

    Article  CAS  Google Scholar 

  • Seth T, Mishra GP, Singh B et al (2018) Optimization of quality DNA isolation protocol from various mucilage rich cultivated and wild Abelmoschus sp. and its validation through PCR amplification. Veg Sci 45(1):1–6

    Google Scholar 

  • Sharma BR, Dhillon TS (1983) Genetics of resistance to yellow vein mosaic virus in inter-specific crosses of okra. Genet Agrar 37:267–276

    Google Scholar 

  • Sharma BR, Sharma DP (1984) Breeding for resistance to yellow vein mosaic virus in okra. Indian J Agric Sci 54(10):917–920

    Google Scholar 

  • Sharma BR, Kumar V, Bajaj KL (1981) Biochemical basis of resistance to yellow vein mosaic virus in okra. Genet Agric 35:121

    CAS  Google Scholar 

  • Shetty AA, Singh JP, Singh D (2013) Resistance to yellow vein mosaic virus in okra: a review. Biol Agric Hortic 29(3):159–164

    Article  Google Scholar 

  • Siemonsma JS (1982) West African okra? Morphological and cytogenetical indications for the existence of a natural amphidiploid of Abelmoschus esculentus (L.) and A. manihot (L.) Mediks. Euphytica 31:241–252. https://doi.org/10.1007/BF00028327

    Article  Google Scholar 

  • Singh RJ (2007) Genetic resources, chromosome engineering, and crop improvement, Vegetable, vol 3. CRC Press/Taylor & Francis Group, Boca Raton/London/New York

    Google Scholar 

  • Singh V, Kumar V (2012) An optimized method of DNA isolation from highly mucilage-rich okra (Abelmoschus esculentus L.) for PCR analysis. Adv Appl Sci Res 3(3):1809–1813

    CAS  Google Scholar 

  • Singh HB, Joshi BS, Khanna PO, Gupta PS (1962) Breeding for field resistance to YVMV in Bhindi. Indian J Genet 22:137–144

    Google Scholar 

  • Singh B, Pal AK, Singh S (2006) Genetic variability and correlation analysis in okra. Indian J Hortic 63(3):281–285

    Google Scholar 

  • Singh AK, Ahmed N, Rajnarayan, Chatoo MA (2007) Genetic variability, correlations and path analysis in okra under Kashmir conditions. Indian J Hortic 64(4):472–474

    Article  Google Scholar 

  • Singh B, Singh PM, Sanwal SK, Pal AK (2014) Standardization of cost effective hybridization technique for hybrid seed production in okra (Abelmoschus esculentus). Indian J Agric Sci 84:1111–1114

    Google Scholar 

  • Singh B, Prasanna HC, Singh PM et al (2017) Harnessing heterosis in vegetable crops: a means for achieving high productivity and profitability. In: KL Chadha, SK Sing, P Kalia, et al (eds). Doubling farmers income through horticulture Astral International, New Delhi, pp. 263–278

    Google Scholar 

  • Sood S, Kalia P (2001) Heterosis and combining ability studies for some quantitative traits in okra (Abelmoschus esculentus (L.) Moench). Haryana J Hortic Sci 30:92–94

    Google Scholar 

  • Thakur MR (1976) Inheritance of yellow vein mosaic in a cross of okra species, Abelmoschus esculentus and A. manihot ssp. Manihot. SABRAO J 8:69–73

    Google Scholar 

  • Tseng M, Breslow RA, deVellis RF, Ziegler RG (2004) Dietary patterns and prostate cancer risk in the national health and nutrition examination survey epidemiological follow-up study cohort. Cancer Epidemol Biomarkers Prev 13:71–77

    Article  CAS  Google Scholar 

  • USDA, National Nutrient Database (2018). http://ndb.nal.usda.gov/. Accessed 05 Mar 2019

  • Venkitaramani KS (1952) A preliminary study on some intervarietal crosses and hybrid vigour in Hibiscus esculentus (L.). J Madras Univ 22:183

    Google Scholar 

  • Vredebregt JH (1990) Taxonomic and ecological observations on species of Abelmoschus Medik. In: International crop network series 5. International Board for Plant Genetic Resources, Rome, pp 69–76

    Google Scholar 

  • Wasala SK, Senevirathne SI, Senanayake JB, Navoditha A (2019) Genetic analysis of Okra Yellow Vein Mosaic Virus disease resistance in wild relative of okra Abelmoschus angulosus Wall. ex Wight & Ar. Plant Genet Res:1–6. https://doi.org/10.1017/S1479262119000078

  • Yildiz M, Koçak M, Baloch FS (2015) Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genet Mol Res 14(3):10588–10602

    Article  CAS  PubMed  Google Scholar 

  • Younis RAA, Hassan SMK, Itriby HAE (2015) Genetic diversity as assessed by molecular markers and morphological traits in Egyptian okra germplasm. Global J Biol Agric Health Sci 4:117–128

    Google Scholar 

  • Yu C, Wu Q, Sun C et al (2019) The phosphoproteomic response of okra (Abelmoschus esculentus L.) seedlings to salt stress. Int J Mol Sci 20:1262. https://doi.org/10.3390/ijms20061262

    Article  CAS  PubMed Central  Google Scholar 

  • Yuan CY, Zhang C, Wang P et al (2014) Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers. Genet Mol Res 13(3):165–175

    Google Scholar 

  • Zhan Y, Wu Q, Chen Y et al (2019) Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics 20:381. https://doi.org/10.1186/s12864-019-5737-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan P. Mishra .

Editor information

Editors and Affiliations

Appendxies

Appendxies

1.1 Appendix I: Research Institutes Involved in Okra Research

Institution

Specialization and research activities

Contact information and website

ICAR-Indian Institute of Vegetable Research

Research for the development of improved okra varieties

Director, ICAR-Indian Institute of Vegetable Research, Post Bag No. 01; P. O. Jakhini (Shahanshapur), Varanasi-221,305, Uttar Pradesh, India Telephone: +91–542-2,635,247; 2,635,236 + 91–5443-229,007

Website: https://www.iivr.org.in/

ICAR-Indian Institute of Horticultural Research (IIHR)

Research for the development of improved okra varieties

ICAR- ICAR-Indian Institute of Horticultural Research (IIHR), Hessaraghatta Lake Post, Bengaluru-560,089, India

E-mail: director.iihr@icar.gov.in

website: https://www.iihr.res.in

ICAR-Indian Agricultural Research Institute

Research for the development of improved okra varieties

Director, ICAR-Indian Agricultural Research Institute

Ph: +91-11-25842367; Fax: +91-11-25846420 E-mail: director@iari.res.in

http://www.iari.res.in

Botanic Garden Meise

Maintenance of plant herbarium

Botanic Garden Meise, Bouchout Domain, Nieuwelaan 38, 1860 Meise

Telephone: +32 2 260 09 20 | Fax: ++32 2 260 09 45 https://www.plantentuinmeise.be/en/home/

Institute of Vegetables and Flowers

Research for the development of improved okra varieties

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF-CAAS), 12 Zhongguancun Nandajie, 100,081 Beijing - China

email: ivfcaas@public3.bta.net.cn

Website: http://www.ivfcaas.net.cn

ICAR-National Bureau of Plant Genetic Resources

Okra germplasm conservation

ICAR-National Bureau of Plant Genetic Resources, PUSA, New Delhi-110,012, India

Telephone: + 91-11-25843697, Fax:+ 91-11-25842495

Email: director.nbpgr(AT)icar.gov.in

Website: http://www.nbpgr.ernet.in/

The New York Botanical Garden

Maintenance of plant herbarium

The New York Botanical Garden,2900 Southern Boulevard, Bronx, NY 10458-5126

Telephone: +1 (718) 817-8622 email: bthiers@nybg.org

Website: http://sweetgum.nybg.org/science/

World Vegetable Center

Okra germplasm collection maintenance and breeding

World Vegetable Center, P.O. Box 42, Shanhua, Tainan, Taiwan 74151

Phone: +886-6-583-7801

Email: info@worldveg.org

Web: avrdc.org

1.2 Appendix II: Genetic Resources of Okra

Cultivar

Important traits

Cultivation location

Kashi Vibhuti (VRO-5)

Dwarf growth habit/bushy type, plant height 60–70 cm during rainy and 45–50 cm during the summer seasons. It bears 2–3 branches with short inter-nodal length. Flowering starts on 4–5th nodes after 38–40 days after sowing. A plant bears 18–22 fruits with 8–10 cm length at marketable stages; yield 170–180 q/ha

India: Rajasthan, Gujarat, Haryana, and Delhi

Kashi Mohini (VRO-3)

Plants are tall, height 110–140 cm, flowers at 4–5th nodes during summer and 5–7th nodes during rainy season after 39–41 days of sowing, fruits 5 ridges, 11.3–12.6 cm long at marketable stage, suitable for summer and rainy season cultivation; gives yield of 130–150 q/ha

Different parts of India

Kashi Mangali (VRO-4)

Plants are tall, height 120–125 cm, flowers at 4–5th nodes after 40–42 days after sowing, fruits 5 ridges, light green; yield 130–150 q/ha

India: Punjab, Uttar Pradesh, Bihar, Jharkhand, Chhattisgarh, Orissa, and Andhra Pradesh

Kashi Pragati (VRO-6)

Plants are tall, height 130–175 cm, with 1–2 effective branches. Fruits are 8–10 cm in length at the marketable stage, 23–25 per plant and yield 180–190 q/ha during rainy and yields 130–140 q/ha during the summer season

India: Chhattisgarh, Orissa and Andhra Pradesh

Kashi Satdhari (IIVR-10)

Plant height is 130–150 cm with 2–3 effective branches, flowering at 42 days after sowing at 3–4th nodes. A plant bears 18–25 fruits with 7 ridges, length 13–15 cm at the marketable stage and yields 110–140 q/ha

India: Uttar Pradesh, Bihar, and Jharkhand

Kashi Lila (IIVR-11)

Plants are of medium height (110–130 cm), flowering starts 30–34 days after sowing. This is suitable for cultivation during rainy and summer season as early crop due to low-temperature tolerance. Fruits with 5 ridges, green and 13–15 cm long. This is resistant to YVMV and gives yields of 150–170 q/ha

India: Chhattisgarh, Orissa, Andhra Pradesh, Rajasthan, Gujarat, Haryana, and Delhi

Shitla Uphar (DVR-1)

Hybrid variety. Plants are medium tall, height 110–130 cm, flowering starts at 38–40 days after sowing at 4–5th nodes. Fruits are green, 11–13 cm long at the marketable stage and yields 150–170 q/ha. This is resistant to yellow vein mosaic virus and OLCV

India: Punjab, Uttar Pradesh, Bihar, Madhya Pradesh, and Maharashtra

Shitla Jyoti (DVR-2)

Hybrid variety. This hybrid is suitable for the warm humid climate with relatively long day length. Plants are medium tall, height 110–150 cm, flowering starts on 30–40 days after sowing at 4–5th nodes. The fruit is green, 12–14 cm long at the marketable stage, yields 180–200 q/ha. This is resistant to YVMV and OLCV

India: Rajasthan, Gujarat, Haryana, Delhi and Chhattisgarh, Orissa and Andhra Pradesh

Kashi Bhairav (DVR-3)

Hybrid variety. Plants are medium tall with 2–3 branches; fruits are dark green with 10–12 cm length at the marketable stage; yield 200–220 q/ha. This is resistant to YVMV and OLCV under field conditions

All the okra growing region of India

Kashi Mahima (DVR-4)

Hybrid variety. Plants are tall, height 130–170 cm, flowering starts at 36–40 days after sowing at 4–5th nodes, fruits are green with 12–14 cm of length at the marketable stage and yield 200–220 q/ha. This has shown field resistance against YVMV and OLCV

India: Punjab, Uttar Pradesh, Bihar, Jharkhand, Chhattisgarh, Orissa, Andhra Pradesh, Madhya Pradesh, and Maharashtra

Kashi Kranti (VRO-22)

It is an early, medium-tall (100–115 cm) variety with short internodes. Resistant to yellow vein mosaic virus and leaf curl virus under field conditions. It takes 38–42 days for first flowering and each plant bears 18–20 fruits of dark green color. The fruits are available from 45 to 95 days after sowing and total yield is 140–150 q/ha

India: Uttar Pradesh, Bihar, Jharkhand, and Punjab

Kashi Shristi (VROH-12)

High yielding (180–190 q/ha) okra hybrid variety having short internodal length, and resistant to YVMV diseases. It is suitable for both summer and rainy season cultivation

India: Uttar Pradesh

Kashi Chaman (VRO-109)

High yielding (150–160 q/ha) variety having short inter-nodal length and resistant to YVMV and OLCV diseases. It is suitable for both summer and Kharif season cultivation

India: Uttar Pradesh

Kashi Lalima (VROR-157)

Early maturing, high-yielding (140–150 q/ha) reddish-purple fruited okra variety, rich in anthocyanin and also having resistance to YVMV and OLCV. It is suitable for both summer and Kharif season cultivation

India: Uttar Pradesh

Kashi Vardan (VRO-25)

High yielding (140–150 q/ha) okra variety having a short inter-nodal length along with 2–3 branches and having resistance to both YVMV and OLCV, while moderately tolerant to major pests under field conditions. It is suitable for both summer and rainy season cultivation

India: Uttar Pradesh, Bihar, Jharkhand, and Punjab

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, G.P. et al. (2021). Breeding Strategies for Yield Gains in Okra (Abelmoschus esculentus L.). In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66961-4_6

Download citation

Publish with us

Policies and ethics