Skip to main content

Two-Dimensional Crystals: Graphene, Silicene, Germanene, and Stanene

  • Chapter
Springer Handbook of Surface Science

Abstract

Since the successful exfoliation of graphene from graphite in 2004, research on two-dimensional crystals has attracted significant attention. An increasing number of new two-dimensional materials have been synthesized, ranging from graphene-like crystals such as hexagonal boron nitride (h-BN) and germanene, to three-atom-thick transition-metal dichalcogenides, and to layered oxides and hydroxides. A wide spectrum of electronic and magnetic properties of great interest have been discovered in these new two-dimensional materials. In this chapter, we review the history and current status of research on group IVA two-dimensional crystals, i. e., graphene, silicene, germanene, and stanene. We give an overall summary of the syntheses of these two-dimensional crystals, especially epitaxial growth in an ultrahigh-vacuum environment. We hope that the knowledge gained from the reviewed systems will guide the design and synthesis of other two-dimensional crystals.

In this chapter, we give a brief review on the epitaxial growth of group IVA two-dimensional (2-D) monolayers on transition-metal substrates in ultrahigh-vacuum (UHV) environments. In Sect. 9.1, we discuss the epitaxial growth of graphene on a Ru(0001) and other transition-metal substrates. In Sects. 9.2 and 9.3, we review the synthesis of silicene and germanene. Stanene and several other monolayers made with metallic elements are discussed in Sect. 9.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris: High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472, 74 (2011)

    ADS  Google Scholar 

  • R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan: High-frequency self-aligned graphene transistors with transferred gate stacks, Proc. Natl. Acad. Sci. 109, 11588 (2012)

    ADS  Google Scholar 

  • S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.S.P. Wong, A. Javey: MoS2 transistors with 1-nanometer gate lengths, Science 354, 99 (2016)

    ADS  Google Scholar 

  • H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Norskov, X. Zheng: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15, 48 (2016)

    ADS  Google Scholar 

  • Q. Tang, D.-E. Jiang: Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, ACS Catalysis 6, 4953 (2016)

    Google Scholar 

  • X.-L. Fan, Y. Yang, P. Xiao: W.-M. Lau. Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges, J. Mater. Chem. A 2, 20545 (2014)

    Google Scholar 

  • Y. Huang, R.J. Nielsen, W.A. Goddard, M.P. Soriaga: The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2, J. Am. Chem. Soc. 137, 6692 (2015)

    Google Scholar 

  • X. Zhao, D. Fu, Z. Ding, Y.-Y. Zhang, D. Wan, S.J.R. Tan, Z. Chen, K. Leng, J. Dan, W. Fu, D. Geng, P. Song, Y. Du, T. Venkatesan, S.T. Pantelides, S.J. Pennycook, W. Zhou, K.P. Loh: Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film, Nano Lett. 18, 482 (2018)

    ADS  Google Scholar 

  • A.K. Geim, I.V. Grigorieva: Van der Waals heterostructures, Nature 499, 419 (2013)

    Google Scholar 

  • L. Lu, J. Velasco, E. Huang, S. Kahn, C. Nosiglia, H.-Z. Tsai, W. Yang, T. Taniguchi, K. Watanabe, Y. Zhang, G. Zhang, M. Crommie, A. Zettl, F. Wang: Photoinduced doping in heterostructures of graphene and boron nitride, Nat. Nanotech. 9, 348 (2014)

    ADS  Google Scholar 

  • M. Lee, J.R. Wallbank, P. Gallagher, K. Watanabe, T. Taniguchi, V.I. Fal’ko, D. Goldhaber-Gordon: Ballistic miniband conduction in a graphene superlattice, Science 353, 1526 (2016)

    ADS  Google Scholar 

  • S. Chen, Z. Han, M.M. Elahi, K.M.M. Habib, L. Wang, B. Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A.W. Ghosh, C.R. Dean: Electron optics with p-n junctions in ballistic graphene, Science 353, 1522 (2016)

    ADS  Google Scholar 

  • W. Zhou, Y.-Y. Zhang, J. Chen, D. Li, J. Zhou, Z. Liu, M.F. Chisholm, S.T. Pantelides, K.P. Loh: Dislocation-driven growth of two-dimensional lateral quantum-well superlattices, Sci. Adv. 4, eaap9096 (2018)

    ADS  Google Scholar 

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666 (2004)

    ADS  Google Scholar 

  • Y. Lin, J.W. Connell: Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene, Nanoscale 4, 6908 (2012)

    ADS  Google Scholar 

  • S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff: Graphene-based composite materials, Nature 442, 282 (2006)

    ADS  Google Scholar 

  • K. Raidongia, A. Nag, K.P.S.S. Hembram, U.V. Waghmare, R. Datta, C.N.R. Rao: BCN: a graphene analogue with remarkable adsorptive properties, Chem. Eur. J. 16, 149 (2010)

    Google Scholar 

  • K. Takeda, K. Shiraishi: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50, 14916 (1994)

    ADS  Google Scholar 

  • S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci: Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009)

    ADS  Google Scholar 

  • C.-C. Liu, W. Feng, Y. Yao: Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011)

    ADS  Google Scholar 

  • L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer: Buckled silicene formation on Ir(111), Nano Lett. 13, 685 (2013)

    ADS  Google Scholar 

  • L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. Cao, H. Gao: Buckled germanene formation on Pt(111), Adv. Mater. 26, 4820 (2014)

    Google Scholar 

  • F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia: Epitaxial growth of two-dimensional stanene, Nat. Mater. 14, 1020 (2015)

    ADS  Google Scholar 

  • X. Duan, C. Wang, A. Pan, R. Yu, X. Duan: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges, Chem. Soc. Rev. 44, 8859 (2015)

    Google Scholar 

  • A.A. Tedstone, D.J. Lewis, P. O’Brien: Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides, Chem. Mater. 28, 1965 (2016)

    Google Scholar 

  • J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nat. Mater. 14, 285 (2015)

    ADS  Google Scholar 

  • M. Langer, M. Kisiel, R. Pawlak, F. Pellegrini, G.E. Santoro, R. Buzio, A. Gerbi, G. Balakrishnan, A. Baratoff, E. Tosatti, E. Meyer: Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface, Nat. Mater. 13, 173 (2014)

    ADS  Google Scholar 

  • X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, K.F. Mak: Strongly enhanced charge-density-wave order in monolayer NbSe2, Nat. Nanotech. 10, 765 (2015)

    ADS  Google Scholar 

  • G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano 6, 3468 (2012)

    Google Scholar 

  • D. Fu, X. Zhao, Y.-Y. Zhang, L. Li, H. Xu, A.R. Jang, S.I. Yoon, P. Song, S.M. Poh, T. Ren, Z. Ding, W. Fu, T.J. Shin, H.S. Shin, S.T. Pantelides, W. Zhou, K.P. Loh: Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride, J. Am. Chem. Soc. 139, 9392 (2017)

    Google Scholar 

  • J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B.I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu: A library of atomically thin metal chalcogenides, Nature 556, 355 (2018)

    ADS  Google Scholar 

  • M. Osada, T. Sasaki: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks, Adv. Mater. 24, 210 (2012)

    Google Scholar 

  • B.-W. Li, M. Osada, T.C. Ozawa, Y. Ebina, K. Akatsuka, R. Ma, H. Funakubo, T. Sasaki: Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process, ACS Nano 4, 6673 (2010)

    Google Scholar 

  • A. Atrei, A.M. Ferrari, D. Szieberth, B. Cortigiani, G. Rovida: Lepidocrocite-like structure of the TiO2 monolayer grown on Ag(100), Phys. Chem. Chem. Phys. 12, 11587 (2010)

    Google Scholar 

  • K. Yin, Y.-Y. Zhang, Y. Zhou, L. Sun, M.F. Chisholm, S.T. Pantelides, W. Zhou: Unsupported single-atom-thick copper oxide monolayers, 2D Mater. 4, 011001 (2017)

    Google Scholar 

  • H.T. Quang, A. Bachmatiuk, A. Dianat, F. Ortmann, J. Zhao, J.H. Warner, J. Eckert, G. Cunniberti, M.H. Rümmeli: In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes, ACS Nano 9, 11408 (2015)

    Google Scholar 

  • Y. Wang, C. Zhou, W. Wang, Y. Zhao: Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound, Ind. Eng. Chem. Res. 52, 4379 (2013)

    Google Scholar 

  • Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech. 7, 699 (2012)

    ADS  Google Scholar 

  • C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912 (2004)

    Google Scholar 

  • G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio: Scattering and interference in epitaxial graphene, Science 317, 219 (2007)

    ADS  Google Scholar 

  • A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9, 30 (2009)

    ADS  Google Scholar 

  • Y. Wang, L. Li, W. Yao, S. Song, J.T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y.Y. Zhang, H. Yang, E.F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S.J. Pennycook, S.T. Pantelides, H.-J. Gao: Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt, Nano Lett. 15, 4013 (2015)

    ADS  Google Scholar 

  • X. Lin, J.C. Lu, Y. Shao, Y.Y. Zhang, X. Wu, J.B. Pan, L. Gao, S.Y. Zhu, K. Qian, Y.F. Zhang, D.L. Bao, L.F. Li, Y.Q. Wang, Z.L. Liu, J.T. Sun, T. Lei, C. Liu, J.O. Wang, K. Ibrahim, D.N. Leonard, W. Zhou, H.M. Guo, Y.L. Wang, S.X. Du, S.T. Pantelides, H.J. Gao: Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters, Nat. Mater. 16, 717 (2017)

    ADS  Google Scholar 

  • S. Hagstrom, H.B. Lyon, G.A. Somorjai: Surface structures on the clean platinum(100) surface, Phys. Rev. Lett. 15, 491 (1965)

    ADS  Google Scholar 

  • S.D. Robertson: Carbon formation from methane pyrolysis over some transition metal surfaces—I. Nature and properties of the carbons formed, Carbon 8, 365 (1970)

    Google Scholar 

  • Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim: Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)

    ADS  Google Scholar 

  • Y. Pan, L. Zhang, L. Huang, L. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. Wang, S. Du, H.-J. Freund, H.-J. Gao: Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene, Small 10, 2215 (2014)

    Google Scholar 

  • Y. Pan, H.G. Zhang, D.X. Shi, J.T. Sun, S.X. Du, F. Liu, H.-J. Gao: Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayers formed on Ru(0001), Adv. Mater. 21, 2777 (2009)

    Google Scholar 

  • A.L. Vázquez de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda: Periodically rippled graphene: growth and spatially resolved electronic structure, Phys. Rev. Lett. 100, 056807 (2008)

    ADS  Google Scholar 

  • J. Mao, L. Huang, Y. Pan, M. Gao, J. He, H. Zhou, H. Guo, Y. Tian, Q. Zou, L. Zhang, H. Zhang, Y. Wang, S. Du, X. Zhou, A.H. Castro Neto, H.-J. Gao: Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Appl. Phys. Lett. 100, 093101 (2012)

    ADS  Google Scholar 

  • S. Lizzit, R. Larciprete, P. Lacovig, M. Dalmiglio, F. Orlando, A. Baraldi, L. Gammelgaard, L. Barreto, M. Bianchi, E. Perkins, P. Hofmann: Transfer-free electrical insulation of epitaxial graphene from its metal substrate, Nano Lett. 12, 4503 (2012)

    ADS  Google Scholar 

  • P. Leicht, L. Zielke, S. Bouvron, R. Moroni, E. Voloshina, L. Hammerschmidt, Y.S. Dedkov, M. Fonin: In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold, ACS Nano 8, 3735 (2014)

    Google Scholar 

  • O. Deniz, C. Sánchez-Sánchez, T. Dumslaff, X. Feng, A. Narita, K. Müllen, N. Kharche, V. Meunier, R. Fasel, P. Ruffieux: Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy, Nano Lett. 17, 2197 (2017)

    ADS  Google Scholar 

  • L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. Cheng: Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun. 3, 699 (2012)

    ADS  Google Scholar 

  • Y. Pan, D.-X. Shi, H.-J. Gao: Formation of graphene on Ru(0001) surface, Chin. Phys. 16, 3151 (2007)

    Google Scholar 

  • D. Martoccia, P.R. Willmott, T. Brugger, M. Björck, S. Günther, C.M. Schlepütz, A. Cervellino, S.A. Pauli, B.D. Patterson, S. Marchini, J. Wintterlin, W. Moritz, T. Greber: Graphene on Ru(0001): a 25 × 25 supercell, Phys. Rev. Lett. 101, 126102 (2008)

    ADS  Google Scholar 

  • J.-T. Sun, S.-X. Du, W.-D. Xiao, H. Hu, Y.-Y. Zhang, G. Li, H.-J. Gao: Effect of strain on geometric and electronic structures of graphene on Ru(0001) surface, Chin. Phys. B 18, 3008 (2009)

    ADS  Google Scholar 

  • D.-E. Jiang, M.-H. Du, S. Dai: First principles study of the graphene ∕ Ru(0001) interface, J. Chem. Phys. 130, 074705 (2009)

    ADS  Google Scholar 

  • B. Wang, M.L. Bocquet, S. Marchini, S. Gunther, J. Wintterlin: Chemical origin of a graphene moire overlayer on Ru(0001), Phys. Chem. Chem. Phys. 10, 3530 (2008)

    Google Scholar 

  • L.Z. Zhang, S.X. Du, J.T. Sun, L. Huang, L. Meng, W.Y. Xu, L.D. Pan, Y. Pan, Y.L. Wang, W.A. Hofer, H.J. Gao: Growth mechanism of metal clusters on a graphene/Ru(0001) template, Adv. Mater. Interfaces 1, 1300104 (2014)

    Google Scholar 

  • Y. Pan, M. Gao, L. Huang, F. Liu, H.J. Gao: Directed self-assembly of monodispersed platinum nanoclusters on graphene moiré template, Appl. Phys. Lett. 95, 093106 (2009)

    ADS  Google Scholar 

  • K. Donner, P. Jakob: Structural properties and site specific interactions of Pt with the graphene–Ru(0001) moiré overlayer, J. Chem. Phys. 131, 164701 (2009)

    ADS  Google Scholar 

  • B. Wang, B. Yoon, M. König, Y. Fukamori, F. Esch, U. Heiz, U. Landman: Size-selected monodisperse nanoclusters on supported graphene: bonding, isomerism, and mobility, Nano Lett. 12, 5907 (2012)

    ADS  Google Scholar 

  • B. Borca, S. Barja, M. Garnica, D. Sánchez-Portal, V.M. Silkin, E.V. Chulkov, C.F. Hermanns, J.J. Hinarejos, A.L. Vázquez de Parga, A. Arnau, P.M. Echenique, R. Miranda: Potential energy landscape for hot electrons in periodically nanostructured graphene, Phys. Rev. Lett. 105, 036804 (2010)

    ADS  Google Scholar 

  • H.G. Zhang, T. Greber: Comment on “potential energy landscape for hot electrons in periodically nanostructured graphene”, Phys. Rev. Lett. 105, 219701 (2010)

    ADS  Google Scholar 

  • H.G. Zhang, H. Hu, Y. Pan, J.H. Mao, M. Gao, H.M. Guo, S.X. Du, T. Greber, H.J. Gao: Graphene based quantum dots, J. Phys. Condens. Matter 22, 302001 (2010)

    Google Scholar 

  • G. Li, H.T. Zhou, L.D. Pan, Y. Zhang, J.H. Mao, Q. Zou, H.M. Guo, Y.L. Wang, S.X. Du, H.-J. Gao: Self-assembly of C60 monolayer on epitaxially grown, nanostructured graphene on Ru(0001) surface, Appl. Phys. Lett. 100, 013304 (2012)

    ADS  Google Scholar 

  • K. Yang, W.D. Xiao, Y.H. Jiang, H.G. Zhang, L.W. Liu, J.H. Mao, H.T. Zhou, S.X. Du, H.J. Gao: Molecule–substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111), J. Phys. Chem. C 116, 14052 (2012)

    Google Scholar 

  • X. Fei, L. Zhang, W. Xiao, H. Chen, Y. Que, L. Liu, K. Yang, S. Du, H.-J. Gao: Structural and electronic properties of Pb-intercalated graphene on Ru(0001), J. Phys. Chem. C 119, 9839 (2015)

    Google Scholar 

  • A. Dong, Q. Fu, M. Wei, Y. Liu, Y. Ning, F. Yang, H. Bluhm, X. Bao: Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient conditions, Surf. Sci. 634, 37 (2015)

    ADS  Google Scholar 

  • E. Voloshina, N. Berdunov, Y. Dedkov: Restoring a nearly free-standing character of graphene on Ru(0001) by oxygen intercalation, Sci. Rep. 6, 20285 (2016)

    ADS  Google Scholar 

  • M. Gao, Y. Pan, L. Huang, H. Hu, L.Z. Zhang, H.M. Guo, S.X. Du, H.J. Gao: Epitaxial growth and structural property of graphene on Pt(111), Appl. Phys. Lett. 98, 033101 (2011)

    ADS  Google Scholar 

  • P. Sutter, J.T. Sadowski, E. Sutter: Graphene on Pt(111): growth and substrate interaction, Phys. Rev. B 80, 245411 (2009)

    ADS  Google Scholar 

  • J. Coraux, A.T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J.M. zu Heringdorf, R. van Gastel, B. Poelsema, T. Michely: Growth of graphene on Ir(111), New J. Phys. 11, 023006 (2009)

    ADS  Google Scholar 

  • A.T. N’Diaye, J. Coraux, T.N. Plasa, C. Busse, T. Michely: Structure of epitaxial graphene on Ir(111), New J. Phys. 10, 043033 (2008)

    Google Scholar 

  • M. Sicot, S. Bouvron, O. Zander, U. Rüdiger, Y.S. Dedkov, M. Fonin: Nucleation and growth of nickel nanoclusters on graphene moiré on Rh(111), Appl. Phys. Lett. 96, 093115 (2010)

    ADS  Google Scholar 

  • E.N. Voloshina, Y.S. Dedkov, S. Torbrügge, A. Thissen, M. Fonin: Graphene on Rh(111): scanning tunneling and atomic force microscopies studies, Appl. Phys. Lett. 100, 241606 (2012)

    ADS  Google Scholar 

  • L. Gao, J.R. Guest, N.P. Guisinger: Epitaxial graphene on Cu(111), Nano Lett. 10, 3512 (2010)

    ADS  Google Scholar 

  • E. Loginova, N.C. Bartelt, P.J. Feibelman, K.F. McCarty: Factors influencing graphene growth on metal surfaces, New J. Phys. 11, 063046 (2009)

    ADS  Google Scholar 

  • P.W. Sutter, J.-I. Flege, E.A. Sutter: Epitaxial graphene on ruthenium, Nat. Mater. 7, 406 (2008)

    ADS  Google Scholar 

  • P. Zeller, X. Ma, S. Günther: Indexing moiré patterns of metal-supported graphene and related systems: strategies and pitfalls, New J. Phys. 19, 013015 (2017)

    ADS  Google Scholar 

  • A.B. Preobrajenski, M.L. Ng, A.S. Vinogradov, N. Mårtensson: Controlling graphene corrugation on lattice-mismatched substrates, Phys. Rev. B 78, 073401 (2008)

    ADS  Google Scholar 

  • J.C. Koepke, J.D. Wood, D. Estrada, Z.-Y. Ong, K.T. He, E. Pop, J.W. Lyding: Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study, ACS Nano 7, 75 (2013)

    Google Scholar 

  • K.W. Clark, X.G. Zhang, I.V. Vlassiouk, G. He, R.M. Feenstra, A.-P. Li: Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene, ACS Nano 7, 7956 (2013)

    Google Scholar 

  • R.-S. Ma, Q. Huan, L.-M. Wu, J.-H. Yan, Y.-Y. Zhang, L.-H. Bao, Y.-Q. Liu, S.-X. Du, H.-J. Gao: Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry, Chin. Phys. B 26, 066801 (2017)

    ADS  Google Scholar 

  • R. Ma, Q. Huan, L. Wu, J. Yan, W. Guo, Y.-Y. Zhang, S. Wang, L. Bao, Y. Liu, S.-X. Du, S.T. Pantelides, H.-J. Gao: Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene, Nano Lett. 17, 5291 (2017)

    ADS  Google Scholar 

  • L. Meng, R. Wu, H. Zhou, G. Li, Y. Zhang, L. Li, Y. Wang, H.J. Gao: Silicon intercalation at the interface of graphene and Ir(111), Appl. Phys. Lett. 100, 083101 (2012)

    ADS  Google Scholar 

  • H. Chen, Y. Que, L. Tao, Y.-Y. Zhang, X. Lin, W. Xiao, D. Wang, S. Du, S.T. Pantelides, H.-J. Gao: Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation, Nano Res. 11, 3722 (2017)

    Google Scholar 

  • Y. Li, D. Subramaniam, N. Atodiresei, P. Lazić, V. Caciuc, C. Pauly, A. Georgi, C. Busse, M. Liebmann, S. Blügel, M. Pratzer, M. Morgenstern, R. Mazzarello: Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111), Adv. Mater. 25, 1967 (2013)

    Google Scholar 

  • R. Brako, D. Šokčević, P. Lazić, N. Atodiresei: Graphene on the Ir(111) surface: from van der Waals to strong bonding, New J. Phys. 12, 113016 (2010)

    ADS  Google Scholar 

  • M. Fuentes-Cabrera, M.I. Baskes, A.V. Melechko, M.L. Simpson: Bridge structure for the graphene/Ni(111) system: a first principles study, Phys. Rev. B 77, 035405 (2008)

    ADS  Google Scholar 

  • X. Peng, R. Ahuja: Epitaxial graphene monolayer and bilayers on Ru(0001): ab initio calculations, Phys. Rev. B 82, 045425 (2010)

    ADS  Google Scholar 

  • M. Iannuzzi, J. Hutter: Comparative study of the nature of chemical bonding of corrugated graphene on Ru(0001) and Rh(111) by electronic structure calculations, Surf. Sci. 605, 1360 (2011)

    ADS  Google Scholar 

  • M. Lei, W. Rongting, Z. Lizhi, L. Linfei, D. Shixuan, W. Yeliang, H.J. Gao: Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models, J. Phys. Condens. Matter 24, 314214 (2012)

    Google Scholar 

  • F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimeš, J. Harl, G. Kresse: Graphene on Ni(111): strong interaction and weak adsorption, Phys. Rev. B 84, 201401 (2011)

    ADS  Google Scholar 

  • T. Olsen, K.S. Thygesen: Random phase approximation applied to solids, molecules, and graphene–metal interfaces: From van der Waals to covalent bonding, Phys. Rev. B 87, 075111 (2013)

    ADS  Google Scholar 

  • R.G.V. Wesep, H. Chen, W. Zhu, Z. Zhang: Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111), J. Chem. Phys. 134, 171105 (2011)

    ADS  Google Scholar 

  • P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108, 155501 (2012)

    ADS  Google Scholar 

  • M. Ezawa: Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109, 055502 (2012)

    ADS  Google Scholar 

  • N. Drummond, V. Zolyomi, V. Fal’Ko: Electrically tunable band gap in silicene, Phys. Rev. B 85, 075423 (2012)

    ADS  Google Scholar 

  • L. Huang, Y.-F. Zhang, Y.-Y. Zhang, W. Xu, Y. Que, E. Li, J.-B. Pan, Y.-L. Wang, Y. Liu, S.-X. Du, S.T. Pantelides, H.-J. Gao: Sequence of silicon monolayer structures grown on a Ru surface: from a herringbone structure to silicene, Nano Lett. 17, 1161 (2017)

    ADS  Google Scholar 

  • B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G. Le Lay: Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene, Appl. Phys. Lett. 96, 183102 (2010)

    ADS  Google Scholar 

  • B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu: Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12, 3507 (2012)

    ADS  Google Scholar 

  • C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai: Structure of silicene grown on Ag(111), Appl. Phys. Express 5, 045802 (2012)

    ADS  Google Scholar 

  • L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu: Evidence for dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109, 056804 (2012)

    ADS  Google Scholar 

  • P. De Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G. Le Lay: Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett. 96, 261905 (2010)

    ADS  Google Scholar 

  • B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray: Epitaxial growth of a silicene sheet, Appl. Phys. Lett. 97, 223109 (2010)

    ADS  Google Scholar 

  • A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura: Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108, 245501 (2012)

    ADS  Google Scholar 

  • H. Shu, D. Cao, P. Liang, X. Wang, X. Chen, W. Lu: Two-dimensional silicene nucleation on a Ag(111) surface: structural evolution and the role of surface diffusion, Phys. Chem. Chem. Phys. 16, 304 (2014)

    Google Scholar 

  • S.K. Mahatha, P. Moras, P.M. Sheverdyaeva, V. Bellini, T.O. Menteş, A. Locatelli, R. Flammini, K. Horn, C. Carbone: Absence of Dirac cones in monolayer silicene and multilayer Si films on Ag(111), J. Electron. Spectrosc. Relat. Phenom. 219, 2 (2017)

    Google Scholar 

  • G.L. Lay, P.D. Padova, A. Resta, T. Bruhn, P. Vogt: Epitaxial silicene: can it be strongly strained?, J. Phys. D Appl. Phys. 45, 392001 (2012)

    Google Scholar 

  • A. Resta, T. Leoni, C. Barth, A. Ranguis, C. Becker, T. Bruhn, P. Vogt, G. Le Lay: Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations, Sci. Rep. 3, 2399 (2013)

    ADS  Google Scholar 

  • L. Chen, H. Li, B. Feng, Z. Ding, J. Qiu, P. Cheng, K. Wu, S. Meng: Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene, Phys. Rev. Lett. 110, 085504 (2013)

    ADS  Google Scholar 

  • Y. Feng, D. Liu, B. Feng, X. Liu, L. Zhao, Z. Xie, Y. Liu, A. Liang, C. Hu, Y. Hu, S. He, G. Liu, J. Zhang, C. Chen, Z. Xu, L. Chen, K. Wu, Y.-T. Liu, H. Lin, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, A. Bansil, X.J. Zhou: Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system, Proc. Natl. Acad. Sci. 113, 14656 (2016)

    ADS  Google Scholar 

  • C.-L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi: Substrate-induced symmetry breaking in silicene, Phys. Rev. Lett. 110, 076801 (2013)

    ADS  Google Scholar 

  • S.K. Mahatha, P. Moras, V. Bellini, P.M. Sheverdyaeva, C. Struzzi, L. Petaccia, C. Carbone: Silicene on Ag(111): a honeycomb lattice without Dirac bands, Phys. Rev. B 89, 201416 (2014)

    ADS  Google Scholar 

  • P.M. Sheverdyaeva, S.K. Mahatha, P. Moras, L. Petaccia, G. Fratesi, G. Onida, C. Carbone: Electronic states of silicene allotropes on Ag(111), ACS Nano 11, 975 (2017)

    Google Scholar 

  • M.E. Davila, A. Rubio, G.L. Lay: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16, 95002 (2014)

    Google Scholar 

  • M. Derivaz, D. Dentel, R. Stephan, M.-C. Hanf, A. Mehdaoui, P. Sonnet, C. Pirri: Continuous germanene layer on Al(111), Nano Lett. 15, 2510 (2015)

    ADS  Google Scholar 

  • L. Zhang, P. Bampoulis, A.N. Rudenko, Q. Yao, A. van Houselt, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet: Structural and electronic properties of germanene on MoS2, Phys. Rev. Lett. 116, 256804 (2016)

    ADS  Google Scholar 

  • C.-S. Ho, S. Banerjee, M. Batzill, D.E. Beck, B.E. Koel: Formation and structure of a (\(\sqrt{19}\)×\(\sqrt{19}\)) R23.4-Ge/Pt(111) surface alloy, Surf. Sci. 603, 1161 (2009)

    ADS  Google Scholar 

  • M. Švec, P. Hapala, M. Ondráček, P. Merino, M. Blanco-Rey, P. Mutombo, M. Vondráček, Y. Polyak, V. Cháb, J.A. Martín Gago, P. Jelínek: Silicene versus two-dimensional ordered silicide: Atomic and electronic structure of Si-(\(\sqrt{19}\)×\(\sqrt{19}\)) R23.4/Pt(111), Phys. Rev. B 89, 201412 (2014)

    ADS  Google Scholar 

  • S. Hajjar, G. Garreau, L. Josien, J.L. Bubendorff, D. Berling, A. Mehdaoui, C. Pirri, T. Maroutian, C. Renard, D. Bouchier, M. Petit, A. Spiesser, M.T. Dau, L. Michez, V. Le Thanh, T.O. Mentes, M.A. Nino, A. Locatelli: Morphology and composition of Au catalysts on Ge(111) obtained by thermal dewetting, Phys. Rev. B 84, 125325 (2011)

    ADS  Google Scholar 

  • Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang: Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett. 111, 136804 (2013)

    ADS  Google Scholar 

  • G.-F. Zhang, Y. Li, C. Wu: Honeycomb lattice with multiorbital structure: topological and quantum anomalous Hall insulators with large gaps, Phys. Rev. B 90, 075114 (2014)

    ADS  Google Scholar 

  • S.-C. Wu, G. Shan, B. Yan: Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett. 113, 256401 (2014)

    ADS  Google Scholar 

  • Y. Xu, Z. Gan, S.-C. Zhang: Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators, Phys. Rev. Lett. 112, 226801 (2014)

    ADS  Google Scholar 

  • J. Wang, Y. Xu, S.-C. Zhang: Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B 90, 054503 (2014)

    ADS  Google Scholar 

  • L. Li, Y. Wang, S. Xie, X.-B. Li, Y.-Q. Wang, R. Wu, H. Sun, S. Zhang, H.-J. Gao: Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett. 13, 4671 (2013)

    ADS  Google Scholar 

  • J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, M.H. Rümmeli: Free-standing single-atom-thick iron membranes suspended in graphene pores, Science 343, 1228 (2014)

    ADS  Google Scholar 

  • P. Koskinen, T. Korhonen: Plenty of motion at the bottom: atomically thin liquid gold membrane, Nanoscale 7, 10140 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbo Pan or Hong-Jun Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Zhang, YY., Pan, J., Du, S., Gao, HJ. (2020). Two-Dimensional Crystals: Graphene, Silicene, Germanene, and Stanene. In: Rocca, M., Rahman, T.S., Vattuone, L. (eds) Springer Handbook of Surface Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-46906-1_9

Download citation

Publish with us

Policies and ethics