Skip to main content

Hadean Zircons Elsewhere in the Solar System

  • Chapter
  • First Online:
Hadean Earth
  • 1151 Accesses

Abstract

Hadean zircons have been documented from fifteen terrestrial localities in Australia, Asia, Africa, and North and South America, in stony and martian meteorites, and in lunar rocks. Extraterrestrial zircons are characterized by the absence of the positive Ce anomaly, seen in virtually all terrestrial zircons, much higher formation temperatures, and a unique suite of mineral inclusions. Remarkably little effort has been directed toward characterizing the geochemical nature of Hadean zircons from terrestrial localities beyond the Jack Hills region and thus it remains unclear how representative it is of the Hadean world. A massive analysis campaign is indicated to better understand Earth’s last true ‘dark age’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barboni, M., Boehnke, P., Keller, B., Kohl, I. E., Schoene, B., Young, E. D., & McKeegan, K. D. (2017). Early formation of the Moon 4.51 billion years ago. Science advances, 3, e1602365.

    Google Scholar 

  • Becker, R. H., & Pepin, R. O. (1984). The case for a Martian origin of the shergottites: Nitrogen and noble gases in EETA 79001. Earth and Planetary Science Letters, 69, 225–242.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., & Harrison, T. M. (2016). Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochimica et Cosmochimica Acta, 191, 187–202.

    Article  Google Scholar 

  • Bizzarro, M., Costa, M. M., & Connelly, J. N. (2018). High-resolution U-Pb chronology of ancient martian zircons. 28th Goldschmidt Conference Abstracts.

    Google Scholar 

  • Bouvier, L. C., Costa, M. M., Connelly, J. N., Jensen, N. K., Wielandt, D., Storey, M., et al. (2018). Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586.

    Article  Google Scholar 

  • Bowring, S. A., & Williams, I. S. (1999). Priscoan (4.00–4.02 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology, 134, 3–16.

    Article  Google Scholar 

  • Byerly, B. L., Lowe, D. R., Drabon, N., Coble, M. A., Burns, D. H., & Byerly, G. R. (2018). Hadean zircon from a ~3.3 Ga sandstone, Barberton greenstone belt. Geology. https://doi.org/10.1130/g45276.1.

  • Carley, T. L., Miller, C. F., Wooden, J. L., Padilla, A. J., Schmitt, A. K., Economos, R. C., et al. (2014). Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth and Planetary Science Letters, 405, 85–97.

    Article  Google Scholar 

  • Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., & Liu, D. (2018). Evidence of enriched, hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from paleoarchean TTGs of the Singhbhum craton, Eastern India. Scientific Reports, 8(7069), 12.

    Google Scholar 

  • Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115–149.

    Article  Google Scholar 

  • Compston, W., Williams, I. S., & Meyer, C. (1984). U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research: Solid Earth, 89, B525–B534.

    Article  Google Scholar 

  • Crow, C. A., McKeegan, K. D., & Moser, D. E. (2017). Coordinated U-Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. Geochimica et Cosmochimica Acta, 202, 264–284.

    Article  Google Scholar 

  • Crowley, J. L., Myers, J. S., Sylvester, P. J., & Cox, R. A. (2005). Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga source rocks. Journal Geologica, 113, 239–263.

    Google Scholar 

  • Cui, P. L., Sun, J. G., Sha, D. M., Wang, X. J., Zhang, P., Gu, A. L., et al. (2013). Oldest zircon xenocryst (4.17 Ga) from the North China Craton. International Geology Reviews, 55, 1902–1908.

    Article  Google Scholar 

  • Dickinson, J. E., Jr., & Hess, P. C. (1982). Zircon saturation in lunar basalts and granites. Earth and Planetary Science Letters, 57, 336–344.

    Article  Google Scholar 

  • Diwu, C. R., Sun, Y., Dong, Z. C., Wang, H. L., Chen, D. L., Chen, L., et al. (2010). In situ U-Pb geochronology of Hadean zircon xenocryst (4.1-3.9 Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrol. Sin. 26, 1171–1174.

    Google Scholar 

  • Diwu, C., Sun, Y., Wilde, S. A., Wang, H., Dong, Z., Zhang, H., et al. (2013). New evidence for ~4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt China. Gondwana Research, 23, 1484–1490.

    Article  Google Scholar 

  • Drake, M. J. (1979). Geochemical evolution of the eucrite parent body-Possible nature and evolution of asteroid 4 vesta. In Asteroids. (A80-24551 08-91) Tucson, Ariz (pp. 765–782). University of Arizona Press.

    Google Scholar 

  • Duo, J., Wen, C. Q., Guo, J. C., Fan, X. P., & Li, X. W. (2007). 4.1 Ga old detrital zircon in western Tibet of China. Chinese Science Bulletin, 52, 23–26.

    Article  Google Scholar 

  • Dyal, P., Parkin, C. W., & Daily, W. D. (1973). Surface magnetometer experiments: Internal lunar properties. Lunar and Planetary Science Conference Proceedings, 4, 2925–2945.

    Google Scholar 

  • Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., & Compston, W. (1983). Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature, 304, 616–618.

    Article  Google Scholar 

  • Fu, B., Page, F. Z., Cavosie, A. J., Fournelle, J., Kita, N. T., Lackey, J. S., Wilde, S. A., & Valley, J. W. (2008). Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156, 197–215.

    Google Scholar 

  • Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., & Burbine, T. H. (2006). Oxygen isotope variation in stony-iron meteorites. Science, 313, 1763–1765.

    Article  Google Scholar 

  • Griffin, W. L., McGregor, V. R., Nutman, A., Taylor, P. N., & Bridgwater, D. (1980). Early archaean granulite-facies metamorphism south of ameralik, West Greenland. Earth and Planetary Science Letters, 50, 59–74.

    Article  Google Scholar 

  • Haba, M. K., Yamaguchi, A., Kagi, H., Nagao, K., & Hidaka, H. (2017). Trace element composition and U-Pb age of zircons from Estherville: Constraints on the timing of the metal-silicate mixing event on the mesosiderite parent body. Geochimica et Cosmochimica Acta, 215, 76–91.

    Article  Google Scholar 

  • Harrison, T. M., & Schmitt, A. K. (2007). High sensitivity mapping of Ti distributions in Hadean zircons. Earth and Planetary Science Letters, 261, 9–19.

    Article  Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T., & Lovera, O. M. (2008). Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for hadean zircons. Earth and Planetary Science Letters, 268, 476–486.

    Article  Google Scholar 

  • Harrison, T. M., Watson, E. B., & Aikman, A. K. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35, 635–638.

    Article  Google Scholar 

  • Hopkins, M. D., & Mojzsis, S. J. (2015). A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contributions to Mineralogy and Petrology, 169, 30.

    Article  Google Scholar 

  • Hopkins, M. D., Mojzsis, S. J., Bottke, W. F., & Abramov, O. (2015). Micrometer-scale U-Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367–378.

    Article  Google Scholar 

  • Huang, G., Niu, G., Zhang, Z., Wang, X., Xu, X., Guo, J., et al. (2013). Discovery of ∼4.0 Ga detrital zircons in the aermantai ophiolitic mélange, East Junggar, northwest China. Chinese Science Bulletin, 58, 3645–3663.

    Article  Google Scholar 

  • Hubbard, N. J., Gast, P. W., Meyer, C., Nyquist, L. E., Shih, C., & Wiesmann, H. (1971). Chemical composition of lunar anorthosites and their parent liquids. Earth and Planetary Science Letters, 13, 71–75.

    Article  Google Scholar 

  • Humayun, M., Nemchin, A., Zanda, B., Hewins, R. H., Grange, M., Kennedy, A., et al. (2013). Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature, 503, 513–516.

    Article  Google Scholar 

  • Kielman, R. B., Nemchin, A. A., Whitehouse, M. J., Pidgeon, R. T., & Bellucci, J. J. (2018). U-Pb age distribution recorded in zircons from Archean quartzites in the Mt. Alfred area, Yilgarn Craton, Western Australia. Precambrian Research, 310, 278–290.

    Google Scholar 

  • Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., et al. (2006). 4.2 Ga zircon xenocryst in an acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 34, 245–248.

    Article  Google Scholar 

  • Iizuka, T., Yamaguchi, T., Hibiya, Y., & Amelin, Y. (2015). Meteorite zircon constraints on the bulk Lu—Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences, 112, 5331–5336.

    Article  Google Scholar 

  • Ireland, T. R., & Wlotzka, F. (1992). The oldest zircons in the solar-system. Earth and Planetary Science Letters, 109, 1–10.

    Article  Google Scholar 

  • Lovering, J. F., et al. (1971). Tranquillityite: A new silicate mineral from Apollo 11 and Apollo 12 basaltic rocks. Proceedings of the Lunar Science Conference, 2, 39–45.

    Google Scholar 

  • Lugmair, G. W., & Shukolyukov, A. (1998). Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

    Article  Google Scholar 

  • Manning, C. E., Mojzsis, S. J., & Harrison, T. M. (2006). Geology, age and origin of supracrustal rocks at Akilia, West Greenland. American Journal of Science, 306, 303–366.

    Article  Google Scholar 

  • McCord, T. B., Adams, J. B., & Johnson, T. V. (1970). Asteroid vesta: Spectral reflectivity and compositional implications. Science, 168, 1445–1447.

    Article  Google Scholar 

  • McCubbin, F. M., Boyce, J. W., Novák-Szabó, T., Santos, A. R., Tartèse, R., Muttik, N., et al. (2016). Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust. Journal of Geophysical Research: Planets, 121, 2120–2149.

    Google Scholar 

  • McGregor, V. R., & Mason, B. (1977). Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amıtsoq gneisses, West Greenland. American Mineralogist, 62, 887–904.

    Google Scholar 

  • Meyer, C., Williams, I. S., & Compston, W. (1996). Uranium-lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics and Planetary Science, 31, 370–387.

    Article  Google Scholar 

  • Miller, S. R., Mueller, P. A., Meert, J. G., Kamenov, G. D., Pivarunas, A. F., Sinha, A. K., et al. (2018). Detrital zircons reveal evidence of Hadean crust in the Singhbhum craton, India. Journal of Geology, 126, 541–552.

    Article  Google Scholar 

  • Mojzsis, S. J., Cates, N. L., Caro, G., Trail, D., Abramov, O., Guitreau, M., et al. (2014). Component geochronology in the polyphase ca. 3920 Ma acasta gneiss. Geochimica et Cosmochimica Acta, 133, 68–96.

    Article  Google Scholar 

  • Mojzsis, S. J., & Harrison, T. M. (2002). Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters, 202, 563–576.

    Google Scholar 

  • Moser, D. E., Chamberlain, K. R., Tait, K. T., Schmitt, A. K., Darling, J. R., Barker, I. R., et al. (2013). Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature, 499, 454–457.

    Article  Google Scholar 

  • Nadeau, S., Chen, W., Reece, J., Lachhman, D., Ault, R., Faraco, M. T. L., et al. (2013). Guyana: The lost hadean crust of South America? Brazilian Journal Geological, 43, 601–606.

    Article  Google Scholar 

  • Nebel-Jacobsen, Y., Munker, C., Nebel, O., Gerdes, A., Mezger, K., & Nelson, D. R. (2010). Reworking of Earth’s first crust: Constraints from Hf isotopes in archean zircons from Mt. Narryer Australia. Precambrian Research, 182, 175–186.

    Article  Google Scholar 

  • Nelson, D. R. (2005). Compilation of geochronology data 2003. No. 2005/2 Western Australia Geological Survey.

    Google Scholar 

  • Nelson, D. R., Robinson, B. W., & Myers, J. S. (2000). Complex geological histories extending for ≥4.0 Ga deciphered from xenocryst zircon microstructures. Earth and Planetary Science Letters, 181, 89–102.

    Article  Google Scholar 

  • Nemchin, A. A., Grange, M. L., Pidgeon, R. T., & Meyer, C. (2012). Lunar zirconology. Australian Journal of Earth Sciences, 59, 277–290.

    Article  Google Scholar 

  • Nemchin, A. A., Humayun, M., Whitehouse, M. J., Hewins, R. H., Lorand, J. P., Kennedy, A., et al. (2014). Record of the ancient martian hydrosphere and atmosphere preserved in zircon from a martian meteorite. Nature Geoscience, 7, 638–642.

    Article  Google Scholar 

  • Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P., & Meyer, C. (2008). SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: Implications for the evolution of lunar KREEP. Geochimica et Cosmochimica Acta, 72, 668–689.

    Google Scholar 

  • Nemchin, A. A., Pidgeon, R. T., Healy, D., Grange, M. L., Whitehouse, M. J., & Vaughan, J. (2009a). The comparative behavior of apatite–zircon U-Pb systems in Apollo 14 breccias: Implications for the thermal history of the Fra Mauro Formation. Meteoritics and Planetary Science, 44, 1717–1734.

    Article  Google Scholar 

  • Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., & Meyer, C. (2009b). Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133.

    Article  Google Scholar 

  • Paquette, J. L., Barbosa, J. S. F., Rohais, S., Cruz, S. C., Goncalves, P., Peucat, J. J., et al. (2015). The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in NE Brazil and NW Argentina. Precambrian Research, 271, 49–55.

    Article  Google Scholar 

  • Pidgeon, R. T., & Nemchin, A. A. (2006). High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia. Precambrian Research, 150, 201–220.

    Article  Google Scholar 

  • Ramdohr, P., & El Goresy, A. (1970). Opaque minerals of the lunar rocks and dust from are Tranquillitatis. Science, 167, 615–618.

    Article  Google Scholar 

  • Srinivasan, G., Whitehouse, M. J., Weber, I., & Yamaguchi, A. (2007). The crystallization age of eucrite zircon. Science, 317, 345–347.

    Article  Google Scholar 

  • Stern, R. A., & Bleeker, W. (1998). Age of the world’s oldest rocks refined using Canada’s SHRIMP the acasta gneiss complex northwest territories Canada. Geosciences Canada, 25, 27–31.

    Google Scholar 

  • Taylor, D. J., McKeegan, K. D., & Harrison, T. M. (2009). 176Lu-176Hf zircon evidence for rapid lunar differentiation. Earth and Planetary Science Letters, 279, 157–164. https://doi.org/10.1016/j.epsl.2008.12.030.

    Article  Google Scholar 

  • Thern, E. R., & Nelson, D. R. (2012). Detrital zircon age structure within ca. 3 Ga metasedimentary rocks Yilgarn craton: Elucidation of hadean source terranes by principal component analysis. Precambrian Research, 214, 28–43.

    Article  Google Scholar 

  • Tice, M. M., Bostick, B. C., & Lowe, D. R. (2004). Thermal history of the 3.5–3.2 Ga Onverwacht and fig tree groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology, 32, 37–40.

    Article  Google Scholar 

  • Treiman, A. H., Gleason, J. D., & Bogard, D. D. (2000). The SNC meteorites are from Mars. Planetary and Space Science, 48, 1213–1230.

    Article  Google Scholar 

  • Wang, H., Chen, L., Sun, Y., Liu, X., Xu, X., Chen, J., et al. (2007). ∼4.1 Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chinese Science Bulletin, 52, 3002–3010.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, 841–844.

    Article  Google Scholar 

  • Whitehouse, M. J., & Nemchin, A. A. (2009). High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chemical Geology, 261, 32–42.

    Article  Google Scholar 

  • Wielicki, M. M., Harrison, T. M., Boehnke, P., & Schmitt, A. K. (2012b). Modeling zircon saturation within simulated impact events: Implications on impact histories of planetary bodies. Lunar and Planetary Science Conference Proceedings, 43.

    Google Scholar 

  • Wielicki, M. M., Harrison, T. M., & Schmitt, A. K. (2012a). Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth and Planetary Science Letters, 321, 20–31.

    Article  Google Scholar 

  • Wood, J. A., Dickey, J. S., Marvin, U. B., & Powell, B. N. (1970). Lunar anorthosites. Science, 167, 602–604.

    Article  Google Scholar 

  • Wyche, S., Nelson, D.R., & Riganti, A. (2004). 4350-3130 Ma detrital zircons in the Southern Cross Granite Greenstone Terrane Western Australia: Implications for the early evolution of the Yilgarn Craton. Australia Journal of Earth Sciences, 51, 31-45.

    Google Scholar 

  • Wyche, S. (2007). Evidence of pre-3100 Ma crust in the Youanmi and South West Terranes, and Eastern Goldfields superterrane, of the Yilgarn craton. Developments in Precambrian Geology, 15, 113–123.

    Article  Google Scholar 

  • Xing, G., Wang, X., Wan, Y., Chen, Z., Yang, J., Jitajima, K., Ushikubo, T., & Gopon, P. (2014) Diversity in early crustal evolution: 4100 Ma zircons in the cathaysia block of southern China. China Science Reports, 4, 51–43.

    Google Scholar 

  • Zhou, Q., Yin, Q. Z., Young, E. D., Li, X. H., Wu, F. Y., Li, Q. L., et al. (2013). SIMS Pb-Pb and U-Pb age determination of eucrite zircons at <5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Hadean Zircons Elsewhere in the Solar System. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_8

Download citation

Publish with us

Policies and ethics