Skip to main content
Log in

A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

New zircon U–Pb and trace element investigations from Apollo 14 lunar impact breccia sample #14311 reveal at least three distinct (Concordia, 2σ) age populations at 4334 ± 10, 4245 ± 10 and 3953 ± 10 Ma. Titanium-in-zircon thermometry (Tixln) results correlated with U–Pb ages range from ~800–1200 ºC. Lattice strain models used to infer zircon versus whole-rock rare earth element contents, and partitioning calculations against lunar impact breccia component compositions, quantitatively constrain formation conditions for the different age populations. A compilation of new data with published work shows that Apollo 14 zircons older than ca. 4300 Ma formed by igneous processes associated with lunar crust formation. Compositional variability in the ca. 4240 Ma zircon age population is interpretable, however, via a mixture of inherited and melt-generated components from one or more large impacts perhaps related to a marked increase in bombardment flux. Ages from the youngest zircon group at ca. 3950 Ma coincide with the classical “late heavy bombardment” (LHB) as documented from previous lunar geochronologies. These results lend support to the idea that instead of a simple unimodal LHB scenario, or a monotonic decline in impacts, the Moon was battered by multiple cataclysms since ca. 4240 Ma. Such a “Picket fence”-like bombardment to the Moon best describes the mode and tempo of impacts that accompanied the late stages of solar system formation and giant planet migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott SS, Harrison TM, Schmitt AK, Mojzsis SJ (2012) A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti–U–Th–Pb depth profiles. Proc Natl Acad Sci 109:13486–13492

    Google Scholar 

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

  • Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the Hadean Earth. Chemie der Erde - Geochem 73:227–248

  • Alexander EC, Davis PK (1974) 40Ar-39Ar ages and trace element contents of Apollo 14 breccias: an interlaboratory cross calibration of 40Ar–39Ar standards. Geochim Cosmochim Acta 38:911–928

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements—meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Google Scholar 

  • Arai T, Yoshitake M, Tomiyama T, Niihahra T, Yokoyama T, Kaiden H, Misawa K, Irving AJ (2010) Support for a prolonged KREEP magmatism: U–Pb age of zircon and baddeleyite in lunar meteorite NWA 4485. Lunar Planet Sci 41:2379

    Google Scholar 

  • Baldwin RB (1963) The measure of the Moon. University of Chicago, Chicago, p 488

    Google Scholar 

  • Black LP, Kamo AL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C (2003) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188

    Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Google Scholar 

  • Bottke WF, Levison HF, Nesvorný D, Dones L (2007) Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190:203–223

    Google Scholar 

  • Bottke WF, Walker RJ, Day JMD, Nesvorný D, Elkins-Tanton L (2010) Stochastic late accretion to Earth, the Moon, and Mars. Science 330:1527–1530

    Google Scholar 

  • Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81

    Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Google Scholar 

  • Chou C-L (1978) Fractionation of siderophile elements in the Earth’s upper mantle. Proc Lunar Planet Sci Conf 9:163–165

    Google Scholar 

  • Cohen BA, Swindle TD, Kring DA (2005) Geochemistry and 40Ar–39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implication for lunar bombardment history. Meteorit Planet Sci 40:755–777

    Google Scholar 

  • Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636

    Google Scholar 

  • Day JMD, Walker RJ, Qin L, Rumble D III (2012) Late accretion as a natural consequence of planetary growth. Nat Geosci 5:614–617

    Google Scholar 

  • Fassett CI, Minton DA (2013) Impact bombardment of the terrestrial planets and the early history of the solar system. Nat Geosci 6:520–524

    Google Scholar 

  • Fernandes VA, Fritz J, Weiss BP, Garrick-Bethell I, Shuster DL (2013) The bombardment history of the Moon as recorded by 40Ar–39Ar chronology. Meteorit Planet Sci 48:241–269

    Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Google Scholar 

  • Fischer-Göde M, Becker H (2012) Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks. Geochim Cosmochim Acta 77:135–156

    Google Scholar 

  • Fritz J, Bitsch B, Kürt E, Morbidelli A, Tornow C, Wünnemann K, Fernandes VA, Grenfell JL, Rauer H, Wagner R, Werner SC (2014) Earth-like habitats in planetary systems. Planet Space Sci 98:254–267

    Google Scholar 

  • Gnos E, Hofmann BA, Al-Kathiri A, Lorenzetti S, Eugster O, Whitehouse MJ, Villa IM, Jull AJT, Eikenberg J, Spettel B, Krähenbühl U, Franchi IA, Greenwood RC (2004) Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon. Science 305:657–659

    Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469

    Google Scholar 

  • Grange ML, Nemchin AA, Pidgeon RT, Timms N, Muhling JR, Kennedy AK (2009) Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim Cosmochim Acta 73:3093–3107

    Google Scholar 

  • Grange ML, Nemchin AA, Timms N, Pidgeon RT, Meyer C (2011) Complex magmatic and impact history prior to 4.1 Ga recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235. Geochim Cosmochim Acta 75:2213–2232

    Google Scholar 

  • Grange ML, Pidgeon RT, Nemchin AA, Timms NE, Meyer C (2013) Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochim Cosmochim Acta 101:112–132

    Google Scholar 

  • Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20:1551–1560

    Google Scholar 

  • Hanchar JM, Van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42

    Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19

    Google Scholar 

  • Hartmann WK (1965) Terrestrial and lunar flux of large meteorites in the last two billion years. Icarus 4:157–165

    Google Scholar 

  • Hartmann WK (1966) Early lunar cratering. Icarus 5:406–418

    Google Scholar 

  • Hartmann WK (1975) Lunar “cataclysm”: A misconception? Icarus 24:181–187

    Google Scholar 

  • Hartmann WK, Ryder G, Dones L, Grinspoon DH (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 493–512

    Google Scholar 

  • Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338

    Google Scholar 

  • Hopkins MD, Mojzsis SJ, Bottke WF, Abramov O (2015) Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus 245:367–378

    Google Scholar 

  • Hoskin PWO, Black LP (2001) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Met Geol 18:423–439

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Google Scholar 

  • Husain L, Schaeffer OA (1975) Lunar evolution: the first 600 million years. Geophys Res Lett 2:29–32

    Google Scholar 

  • Ivanov BA, Melosh HJ (2003) Impacts do not initiate volcanic eruptions I: eruptions close to the crater. Geology 31:869–872

    Google Scholar 

  • Jackson ED, Sutton RL, Wilshire HG (1975) Structure and petrology of a cumulus norite boulder sampled by Apollo 17 in Taurus–Littrow valley, the Moon. Geol Soc Am Bull 86:433

    Google Scholar 

  • Johnson BC, Melosh HJ (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:75–77

    Google Scholar 

  • Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B (2015) Zircon Th/U in magmatic environs. Lithos 212–215:397–414

    Google Scholar 

  • Liu D, Jolliff BL, Zeigler RA, Korotev RL, Wan Y, Xie H, Zhang Y, Dong C, Wang W (2012) Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet Sci Lett 319–320:277–286

    Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot/Ex: a geochronological toolkit for Microsoft Excel. Berkley Geochron Cent Spec Publ 4

  • Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K, Morbidelli A, Kring DA (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582

    Google Scholar 

  • Mattinson J, Graubard C, Parkinson DL, McClelland WC (1996) U–Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-micron transport of Pb. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, DC, pp 355–370

    Google Scholar 

  • Maurer P, Eberhart P, Geiss J, Grögler N, Stettler A, Brown GM, Pickett A, Krähenbühl K (1978) Pre-Imbrian craters and basins—ages, compositions and excavation depths of Apollo 16 breccias. Geochim Cosmochim Acta 42:1687–1720

    Google Scholar 

  • Meyer C, Williams IS, Compston W (1996) Uranium-lead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit Planet Sci 31:370–387

    Google Scholar 

  • Mojzsis SJ, Krishnamurthy R, Arrhenius G (1999) Before RNA and After: geophysical and geochemical constraints on molecular evolution. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, pp 1–47

    Google Scholar 

  • Mojzsis SJ, Cates NL, Caro G, Trail D, Abramov O, Guitreau M, Blichert-Toft J, Hopkins MD, Bleeker W (2014) Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochim Cosmochim Acta 133:68–96

    Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A Sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355–356:144–151

    Google Scholar 

  • Nemchin AA, Pidgeon RT, Whitehouse MJ, Vaughan JP, Meyer C (2008) SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim Cosmochim Acta 72:668–689

    Google Scholar 

  • Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whitehouse MJ, Vaughan J (2009a) The comparative behavior of apatite–zircon U–Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteorit Planet Sci 44:1717–1734

    Google Scholar 

  • Nemchin AA, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009b) Timing and crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136

    Google Scholar 

  • Nemchin AA, Grange ML, Pidgeon RT (2010) Distribution of rare earth elements in lunar zircon. Am Mineral 95:273–283

    Google Scholar 

  • Nemchin AA, Grange ML, Pidgeon RT, Meyer C (2012) Lunar zirconology. Aust J Earth Sci 59:277–290

  • Nesvorný D (2011) Young solar system’s fifth giant planet? Astrophys J Lett 742:L22

  • Nesvorný D, Morbidelli A (2012) Statistical study of the early solar system’s instability with four, five and six giant planets. Astrophys J 144:117

    Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroidal cratering data. In: Gehrels T, Matthews MS, Schumann A (eds) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Neukum G, Ivanov B, Hartmann WK (2001) Cratering records in the inner solar system. In: Kallenbach R, Giess J, Hartmann WK (eds) Chronology and evolution of Mars. Kluwer, Dordrecht, pp 55–86

    Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC, Van den Heuvel BE (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precamb Res 91:41–63

    Google Scholar 

  • Norman MD, Nemchin AA (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 388:387–398

    Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry and petrology of a ferroan anorthosite clast from Descartes breccia 67215: clues to the age, origin, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661

    Google Scholar 

  • Nyquist L, Bogard D, Yamaguchi A, Shih C-Y, Karouji Y, Ebihara M, Reese Y, Garrison D, McKay G, Takeda H (2006) Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. Geochim Cosmochim Acta 70:5990–6015

    Google Scholar 

  • Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51

    Google Scholar 

  • Öpik EJ (1960) The lunar surface as an impact counter. Mon Not R Astron Soc 120:404–411

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013

    Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1971) Rb–Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth Planet Sci Lett 12:36–48

  • Pearce NJG, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard—multi-element methods. Quat Int 34–36:213–227

    Google Scholar 

  • Pidgeon RT, Nemchin AA, van Bronswijk W, Geisler T, Meyer C, Compston W, Williams IS (2007) Complex history of a zircon aggregate from lunar breccia 73235. Geochim Cosmochim Acta 71:1370–1381

    Google Scholar 

  • Pidgeon RT, Nemchin AA, Grange ML, Meyer C (2010) Evidence for a lunar “cataclysm” at 4.34 Ga from zircon U–Pb systems. Proc Lunar Sci Conf 411126

  • Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161:293–311

    Google Scholar 

  • Righter K, Humayun M, Danielson L (2008) Partitioning of palladium at high pressures and temperatures during core formation. Nat Geosci 1:321–323

    Google Scholar 

  • Ryder G (1990) Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71:313–323

    Google Scholar 

  • Ryder G (2002) Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth. J Geophys Res. doi:10.1029/2001JE001583

    Google Scholar 

  • Ryder G, Koeberl C, Mojzsis SJ (2000) Heavy bombardment of the Earth at ∼3.85 Ga: the search for petrographic and geochemical evidence. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. The University of Arizona Press, Tucson, AZ, pp 475–492

    Google Scholar 

  • Schmitt AK, Vazquez JA (2006) Alteration and remelting of nascent oceanic crust during continental rupture: evidence from zircon geochemistry of rhyolites and xenoliths from the Salton Trough, California. Earth Planet Sci Lett 252:260–274

    Google Scholar 

  • Schmitz MD, Bowring SA, Ireland TR (2003) Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U–Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim Cosmochim Acta 67:3665–3672

    Google Scholar 

  • Schonfeld E, Meyer C (1972) The abundance of components of the lunar soils by a least-squares mixing model and the formation age of KREEP. Proc Lunar Sci Conf 4:1397–1420

    Google Scholar 

  • Schuhmacher M, de Chambost E, McKeegan KD, Harrison TM, Migeon H (1994) Dating of zircon with the CAMECA IMS 1270. In: Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) Secondary ion mass spectrometry SIMS IX. Wiley, New York, pp 912–922

    Google Scholar 

  • Schuster DL, Balco G, Cassata WS, Fernandes VA, Garrick-Bethell I, Weiss BP (2010) A record of impacts preserved in the lunar regolith. Earth Planet Sci Lett 290:155–165

    Google Scholar 

  • Scoates JS, Chamberlain KR (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrological consequences and U–Pb ages. Am Mineral 80:1317–1327

    Google Scholar 

  • Simonds CH, Phinney WC, Warner JL, McGee P, Geeslin J, Brown R, Rhodes J (1977) Apollo 14 revisited, or breccias aren’t so bad after all. Proc Lunar Sci Conf 81869–1893

  • Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Taylor GJ, Warren PH, Ryder G, Delano J, Pieters C (1991) Lunar rocks. In: Heiken GH, Vaniman D, French B (eds) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, New York, pp 183–284

    Google Scholar 

  • Taylor DJ, McKeegan KD, Harrison TM (2009) Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet Sci Lett 279:157–164

    Google Scholar 

  • Taylor RJM, Harley SL, Hinton RW, Elphick S, Clark C, Kelly NM (2014) Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. J Metamorph Geol. doi:10.1111/jmg.12118

    Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Google Scholar 

  • Terada K, Anand M, Sokol AK, Bischoff A, Sano Y (2007) Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450:849–852

    Google Scholar 

  • Timms NE, Reddy SM, Healy D, Nemchin AA, Grange ML, Pidgeon RT, Hart R (2012) Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteorit Planet Sci 47:120–141

    Google Scholar 

  • Touboul M, Puchtel IS, Walker RJ (2012) 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–1069

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM (2007) Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim Cosmochim Acta 71:4044–4065

    Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461

    Google Scholar 

  • Turner G, Cadogan PH, Yonge CJ (1973) Argon selenochronology. Proc Lunar Planet Sci Conf 2:1889–1914

    Google Scholar 

  • Turner G, Enright MC, Hennessey J (1979) Dating heavenly bodies and Monte Carlo models. Proc Lunar Planet Sci Conf 10:1247–1249

    Google Scholar 

  • Valley JW, Spicuzza MJ, Ushikubo T (2014) Correlated δ18O and [Ti] in lunar zircons: a terrestrial perspective for magma temperatures and water content on the Moon. Contrib Mineral Petrol 167:956

    Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chemie der Erde-– geochemistry 69:101–125

    Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Google Scholar 

  • Werner S (2014) Moon, Mars, Mercury: basin formation ages and implications for the maximum surface age and the migration of gaseous planets. Earth Planet Sci Lett 400:54–65

    Google Scholar 

  • White W (2013) Trace elements in igneous processes. Geochemistry. Wiley, Hoboken, pp 268–318

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår Ø, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39

    Google Scholar 

  • Wielicki M, Harrison TM, Boehnke P, Sciences S, Angeles L (2012a) Modeling zircon saturation within simulated impact events: implication on impact histories of planetary bodies. Lunar Planet Sci Conf 43:2912

    Google Scholar 

  • Wielicki MM, Harrison TM, Schmitt AK (2012b) Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet Sci Lett 321–322:20–31

    Google Scholar 

  • Wilhelms DE (1987) The geological history of the Moon. United States geological survey professional paper 1348, p 302

  • Willbold M, Elliot T, Moorbath S (2011) The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477:195–198

  • Zahnle KJ, Arndt J, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78

    Google Scholar 

  • Zhou Q, Yin Q, Young ED, Li X-H, Wu F-Y, Li Q-L, Liu Y, Tang G-Q (2013) SIMS Pb–Pb and U–Pb age determination of eucrite zircons at <5 μm scale at the first 50 Ma of the thermal history of Vesta. Geochim Cosmochim Acta 110:152–175

    Google Scholar 

Download references

Acknowledgments

We thank the Apollo 14 crew and the Lunar Curatorial Facility, Johnson Space Center (NASA) for the provision of these samples. This work benefitted from discussions and debates with O. Abramov, W. F. Bottke, R. Brasser, T. M. Harrison, N. M. Kelly, D. A. Kring, K. D. McKeegan, A. Morbidelli, M. M. Wielicki and K. J. Zahnle. The manuscript was improved by constructive comments from three anonymous reviewers and editorial handling by H. Keppler. Support from the NASA Lunar Science Institute under Grant NNH08ZDA008C to the Center for Lunar Origin and Evolution, and the NASA Cosmochemistry Program (NNH13ZDA001N-COS) is gratefully acknowledged. A substantial portion of the manuscript was completed, while SJM held a Distinguished Research Professorship at the Institute for Geological and Geochemical Research, Research Center for Astronomy and Earth Sciences of Hungarian Academy of Sciences. We also wish to thank Axel Schmitt and Rita Economos for assistance with the Cameca ims1270 ion microprobe at UCLA, D. London and G. Morgan (University of Oklahoma) for CL imaging, and Julien Allaz for help with the electron microprobe at CU Boulder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mojzsis.

Additional information

Communicated by Hans Keppler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, M.D., Mojzsis, S.J. A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. Contrib Mineral Petrol 169, 30 (2015). https://doi.org/10.1007/s00410-015-1123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1123-x

Keywords

Navigation