Skip to main content

Chapter 13: Technology vs. Mercury: The Metal That Scars Civilization

  • Chapter
  • First Online:
Technology and Global Public Health

Abstract

Both inorganic mercury and organic mercury compounds, including methyl mercury and ethyl mercury, are noxious pollutants known to cause deleterious neurological and cardiovascular effects in humans and profoundly affect the brains and development of infants and children (for review see Bernhoft RA. J Environ Public Health, 2012; Jung-Duck Park, Wei Zheng. J Prev Med Public Health. 45(6):344–352, 2012; Charles TD, Robert PM, Hing MC, Daniel JJ, Nicola P. J Prev Med Public Health 45(6):344–352, 2012; Bjørklund G, Dadar M, Mutter J, Aaseth J. Environ Res. 159:545–554: 2017; Counter SA, Buchanan LH, Toxicol Appl Pharmacol, 198(2):209–30, 2004). Mercury vapor released into the air from fossil fuel–generating plants and industrial processes can remain aloft for hours to days and be transported thousands of miles until it contaminates aquatic ecosystems and, ultimately, the world’s oceans. In contaminated aquatic environments, microbes convert inorganic mercury to organic mercury and the resultant compounds bioaccumulate in the aquatic food chain (Bernhoft RA. J Environ Public Health, 2012; Jung-Duck Park, Wei Zheng. J Prev Med Public Health. 45(6):344–352, 2012; Charles TD, Robert PM, Hing MC, Daniel JJ, Nicola P. J Prev Med Public Health 45(6):344–352, 2012; Bjørklund G, Dadar M, Mutter J, Aaseth J. Environ Res. 159:545–554: 2017; Counter SA, Buchanan LH, Toxicol Appl Pharmacol, 198(2):209–30, 2004). This presents a serious risk worldwide as human fish consumption supports nutrition around the globe. Human exposure to inorganic mercury is generally through inhalation, whereas exposure to organic mercury is largely due to its consumption of organomercury-containing foodstuffs (Chang LW. J Toxicol Sci, 15(Suppl 4):125–51, 1990; Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM. Glob Biogeochem Cycles, 23(2):GB2010, 2009).Recently, U.S. federal regulatory requirements have spurred the development of technologies and changes in industrial practices in the U.S. and industrialized nations that have significantly reduced mercury levels in the air and organic mercury levels in fish (Griggs MB. Pop Sci, 2015; Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Waters KM, Harding A. Environ Sci Technol, 2015; Cheng-Shiuan L, Molly EL, Emily C, Daniel JM, Robert MC, Nicholas SF. Environ Sci Technol, 2016). However, current rollbacks of regulations in industrialized nations and unregulated emissions from developing nations are once again increasing levels of airborne inorganic and waterborne organic mercury. It is critical for future generations to foster the development of better, cheaper, and more efficient technologies to limit mercury pollution and protect aquatic components of the world’s food supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CH3Hg+:

MeHg+ methyl mercury

Hg (II):

mercury with +2 valence

Hg:

mercury

Hg0:

elemental mercury

References

  1. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012:460508.. PMCID: PMC3253456

    Google Scholar 

  2. Park J-D, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45(6):344–52., PMCID: PMC3514464.

    Article  Google Scholar 

  3. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. J Prev Med Public Health. 2012;45(6):344–52., PMCID: PMC3514464.

    Article  Google Scholar 

  4. Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: current research and emerging trends. Environ Res. 2017;159:545–54. https://doi.org/10.1016/j.envres.2017.08.051.. Epub 2017 Sep 8. PMID: 28889024.

    Article  CAS  PubMed  Google Scholar 

  5. Counter SA, Buchanan LH. Mercury exposure in children: a review. Toxicol Appl Pharmacol. 2004;198(2):209–30., PMID: 15236954.

    Article  CAS  Google Scholar 

  6. Chang LW. The Neurotoxicology and pathology of Organomercury, Organolead, and organotin. J Toxicol Sci. 1990;15(Suppl 4):125–51., PMID: 2100318.

    Article  CAS  Google Scholar 

  7. Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Glob Biogeochem Cycles. 2009;23(2):GB2010. ISSN 1944-9224. https://doi.org/10.1029/2008GB003425.

    Article  CAS  Google Scholar 

  8. Griggs MB. Mercury Scrubbers On Power Plants Clean Up Other Pollutants, Too. Pop Sci. 2015.

    Google Scholar 

  9. Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Waters KM, Harding A. Relative influence of trans-Pacific and regional atmospheric transport of PAHs in the Pacific Northwest, U.S. Environ Sci Technol. ISSN 0013-936X. 2015; https://doi.org/10.1021/acs.est.5b00800.

  10. Lee C-S, Lutcavage ME, Chandler E, Madigan DJ, Cerrato RM, Fisher NS. Declining mercury concentrations in Bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ Sci Technol. 2016; https://doi.org/10.1021/acs.est.6b04328.

  11. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 2003;18(3):149–75. https://doi.org/10.1002/tox.10116.

    Article  CAS  PubMed  Google Scholar 

  12. Waldron HA. Did the mad hatter have mercury poisoning? Br Med J. 1961. PMC 1550196 Freely accessible;287(6409) https://doi.org/10.1136/bmj.287.6409.

  13. Medicine Health. Mercury poisoning. Emedicine Health. N.p., 23 Apr. 2010. Web. 23 Apr. 2012. <http://www.emedicinehealth.com/mercury_poisoning/article_em.htm>.

  14. Mad Hatter syndrome. Stedman’s Medical Dictionary. MediLexicon International Ltd. 2013.

    Google Scholar 

  15. Kitzmiller K. The Not-So-Mad Hatter: occupational hazards of mercury. Chemical Abstracts Service. American Chemical Society. 2013.

    Google Scholar 

  16. Lee WR. The history of the statutory control of mercury poisoning in Great Britain. Br J Ind Med. 1968;25(1):52–62. PMC 1008662 Freely accessible. https://doi.org/10.1136/oem.25.1.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34(4):369–403.. PMID: 9288445

    Article  CAS  Google Scholar 

  18. Bateman T. Notes of a case of mercurial Erethism. Med Chir Trans. 1918;9(Pt 1):220–33.. PMCID: PMC2128877

    Google Scholar 

  19. Buckell M, Hunter D, Milton R, Perry KM. Chronic mercury poisoning. Br J Ind Med. 1993;50(2):97–106. PMCID: PMC1061245.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Waldron HA. Did the mad hatter have mercury poisoning? Br Med J (Clin Res Ed). 1983;287(6409):1961., PMCID: PMC1550196.

    Article  CAS  Google Scholar 

  21. Devine ET, Kellogg PU eds. The Survey. 51; 1924. Survey Associates: 457. Retrieved 10 March 2013.

    Google Scholar 

  22. Wedeen RP. Were the hatters of New Jersey ‘mad’? Am J Ind Med. 1989;16(2):225–33. https://doi.org/10.1002/ajim.4700160213.. What remains most remarkable about the hatters of New Jersey is that they expressed no anger about their working conditions. Minutes of the Hat Finisher’s Association of the City of Newark from 1853 to 1870 make no reference to hatters’ shakes. Neither the hatters nor the public nor the medical community was mad about the health costs of industrial progress

    Article  CAS  PubMed  Google Scholar 

  23. Freeman JA. Mercurial disease among hatters. Trans Med Soc New Jersey: 61–64. During the winter of 1858–59 and following spring, there prevailed quite extensively among the hatters of Orange, Newark, Bloomfield, and Milburn a disease showing all the medical characteristics of Mercurial Salivation and Stomatitis. More than a hundred cases occurred in Orange alone. The usual symptoms were ulceration of the gums, loosening of the teeth, foeter of the breath, abnormal saliva, tremors of the upper extremities, or a shaking palsy, the result of inhaling air impregnated with mercury vapor. (Cited in Wedeen, 1989). 1860.

    Google Scholar 

  24. Wedeen RP. Were the hatters of new Jersey “mad”? Am J Ind Med. 1989;16(2):225–33.

    Article  CAS  Google Scholar 

  25. Neal PA, Jones RR, Bloomfield JJ, Dallavalle JM, Edwards TI. A study of chronic mereurialism in the hatter’s fur-cutting industry. <http://www.cabdirect.org/abstracts/19382700038.html;jsessionid=A3145BBE9D19C0C4CDAE4F82B9FF9883, 1937.

  26. Merler E, Boffetta P, Masala G, Monechi V, Bani F. A cohort study of workers compensated for mercury intoxication following employment in the fur hat industry. J Occupat Med. 1994;36(11):1260–4. https://doi.org/10.1097/00043764-199411000-00016.

    Article  CAS  Google Scholar 

  27. Dennis, L. Hatting: as effecting the health of operatives. Rep New Jersey State Board Health. 1878; 2: 67–85..

    Google Scholar 

  28. Stickler JW. Hatters’ consumption. New York Med J. 1896; 43: 598–602. (Cited in Wedeen, 1989).

    Google Scholar 

  29. Stickler JW. The hygiene of occupations. II. Diseases of hatters. Tenth Annual Report of the Board of Health of New Jersey and Report of the Bureau of Vital Statistics 1886. Trenton: John L. Murphy Publishing Co; 1887. pp. 166–188. (Cited in Wedeen, 1989).

    Google Scholar 

  30. Stainsby, W. Diseases and disease tendencies of occupations: the glass industry and the hatting industry. Twenty-Fourth Annual Report of the Bureau of Statistics of New Jersey. Trenton; 1901. (Cited in Wedeen, 1989).

    Google Scholar 

  31. Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ. Global sources and pathways of mercury in the context of human health. Int J Environ Res Public Health. 2017;14(1):105. https://doi.org/10.3390/ijerph14010105.

    Article  CAS  PubMed Central  Google Scholar 

  32. Kim M-K, Zoh K-D. Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health. 2012; 45(6): 335–343. Published online 2012 Nov 29. https://doi.org/10.3961/jpmph.2012.45.6.335, PMCID: PMC3514463.

  33. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013; 47(10): 4967–4983. Published online 2013 Apr 16. https://doi.org/10.1021/es305071v PMCID: PMC3701261.

  34. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review, Bull World Health Organ. 2014; 92(4): 254–269F. Published online https://doi.org/10.2471/BLT.12.116152, PMCID: PMC3967569.

  35. Schartup AT, Mason RP, Balcom PH, Hollweg TA, Chen CY, Methylmercury production in estuarine sediments: role of organic matter. Environ Sci Technol. Author manuscript; available in PMC, Published in final edited form as: Environ Sci Technol. 2013; 47(2): 695–700. Published online 2012 Dec 21. https://doi.org/10.1021/es302566w, PMCID: PMC4066882.

  36. Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J. Air Contamination by Mercury, Emissions and Transformations—a Review. Water Air Soil Pollut. 2017; 228(4): 123. Published online 2017 Mar 3. https://doi.org/10.1007/s11270-017-3311-y, PMCID: PMC5336545.

  37. Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, Vincent LS Louis, Sunderland EM. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci U S A. 2016; 113(3): 526–531. Published online 2016 Jan 4. https://doi.org/10.1073/pnas.1516312113, PMCID: PMC4725498.

  38. Chen CY, Driscoll CT, Lambert KF, Mason RP, Rardin LR, Serrell N, Sunderland EM. Marine mercury fate: from sources to seafood consumers. Environ Res 2012; 119:1–2. https://doi.org/10.1016/j.envres.2012.10.001. Epub 2012 Oct 31. PMID: 23121885.

  39. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ. 2014; 92(4): 254–269F. Published online 2014 Jan 10. https://doi.org/10.2471/BLT.12.116152, PMCID: PMC3967569.

  40. Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J. Air contamination by mercury, emissions and transformations—a Review. Water Air Soil Pollut. 2017; 228(4): 123. Published online 2017 Mar 3. doi: https://doi.org/10.1007/s11270-017-3311-y, PMCID: PMC5336545.

  41. Burger J, Gochfeld M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci Total Environ. Author manuscript; available in PMC 2015 Jan 20, Published in final edited form as: Sci Total Environ. 2011; 409(8): 1418–1429. Published online 2011 Feb 2. https://doi.org/10.1016/j.scitotenv.2010.12.034, PMCID: PMC4300121.

  42. Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ. Global sources and pathways of mercury in the context of human health. Int J Environ Res Public Health. 2017;14(1):pii: E105. https://doi.org/10.3390/ijerph14010105., PMID: 28117743.

    Article  CAS  Google Scholar 

  43. Pacyna JM, Sundseth K, Pacyna EG, Jozewicz W, Munthe J, Belhaj M, Aström S. An assessment of costs and benefits associated with mercury emission reductions from major anthropogenic sources. J Air Waste Manag Assoc. 2010;60(3):302–15., PMID: 20397560.

    Article  CAS  Google Scholar 

  44. Fields CA, Borak J, Louis ED. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor. Crit Rev Toxicol. 2017; 47(10):811–844. https://doi.org/10.1080/10408444.2017.1342598. Epub 2017 Jul 18, PMID: 28718354.

  45. Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010;396(1):120–4. https://doi.org/10.1016/j.bbrc.2010.03.083., PMID: 20494123.

    Article  CAS  PubMed  Google Scholar 

  46. Farina M, Aschner M. Methylmercury-induced neurotoxicity: focus on pro-oxidative events and related consequences. Adv Neurobiol. 2017;18:267–86. https://doi.org/10.1007/978-3-319-60189-2_13., PMID: 28889272.

    Article  PubMed  Google Scholar 

  47. Farina M, Aschner M. Methylmercury-induced neurotoxicity: focus on pro-oxidative events and related consequences. Adv Neurobiol. 2017;18:267–86. https://doi.org/10.1007/978-3-319-60189-2_13., PMID: 28889272.

    Article  PubMed  Google Scholar 

  48. Karita K, Sakamoto M, Yoshida M, Tatsuta N, Nakai K, Iwai-Shimada M, Iwata T, Maeda E, Yaginuma-Sakurai K, Satoh H, Murata K. Recent epidemiological studies on methylmercury, mercury and selenium. Nihon Eiseigaku Zasshi. 2016;71(3):236–51. Japanese.

    Article  CAS  Google Scholar 

  49. Yokel RA, Lasley SM, Dorman DC. The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. J Toxicol Environ Health B Crit Rev. 2006;9(1):63–85., PMID: 16393870.

    Article  CAS  Google Scholar 

  50. Kim KH, Kabir E, Jahan SA. A review on the distribution of hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85. https://doi.org/10.1016/j.jhazmat.2015.11.031. Epub 2015 Nov 21, PMID: 26826963.

    Article  CAS  PubMed  Google Scholar 

  51. Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: current research and emerging trends. Environ Res. 2017;159:545–54. https://doi.org/10.1016/j.envres.2017.08.051.. Epub 2017 Sep 8, PMID: 28889024.

    Article  CAS  PubMed  Google Scholar 

  52. Li WC, Tse HF. Health risk and significance of mercury in the environment. Environ Sci Pollut Res Int. 1:192, 2015–201. https://doi.org/10.1007/s11356-014-3544-x.. Epub 2014 Sep 16, PMID: 25220768.

  53. Kim MK, Zoh KD. Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health. 45(6):335–43. https://doi.org/10.3961/jpmph.2012.45.6.335. Epub 2012 Nov 29. Review. Erratum in: J Prev Med Public Health. 2013 Jul. 2012;46(4):211.PMID: 23230463.

  54. Ullrich S, Tanton T, Abdrashitova S. Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol. 2001;31(3):241–93. https://doi.org/10.1080/20016491089226.

    Article  CAS  Google Scholar 

  55. Govindaswamy N, Moy J, Millar M, Koch SA. A distorted mercury [hg(SR)4]2− complex with alkanethiolate ligands: the fictile coordination sphere of monomeric [hg(SR)x] complexes. Inorg Chem. 1992;26(26):5343–4. https://doi.org/10.1021/ic00052a001.

    Article  Google Scholar 

  56. Erni I, Geier G. Kinetics of extremely fast ligand exchange reactions with methylmercury(II)-complexes of 1-Methylpyridine-2-thione and 1-methyl-quinaldine-4-thione: rate-equilibria correlations. Helv Chim Acta. 1979;62(4):1007–15. https://doi.org/10.1002/hlca.19790620411.

    Article  CAS  Google Scholar 

  57. Mining Technology in the Nineteenth Century | ONE www.onlinenevada.org/articles/mining-technology.

  58. EPA mercury. Retrieved 2018, https://www.epa.gov/mercury/what-epa-doing-reduce-mercury-pollution-and-exposures-mercury.

  59. Slowey AJ, Rytuba JJ, Brown GE Jr. Speciation of mercury and mode of transport from placer gold mine tailings. Environ Sci Technol. 39(6):1547–54.. PMID: 15819208

    Google Scholar 

  60. Domagalski JL, Alpers CN, Slotton DG, Suchanek TH, Ayers SM. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California. Sci Total Environ. 2004;327(1–3):215–37.. PMID: 15172583

    Article  CAS  Google Scholar 

  61. Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J. Air contamination by mercury, emissions and transformations-a review. Water Air Soil Pollut. 2017;228(4):123. https://doi.org/10.1007/s11270-017-3311-y.. Epub 2017 Mar 3, PMID: 28316351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Basu N, Clarke E, Green A, Calys-Tagoe B, Chan L, Dzodzomenyo M, Fobil J, Long RN, Neitzel RL, Obiri S, Odei E, Ovadje L, Quansah R, Rajaee M, Wilson ML. Integrated assessment of artisanal and small-scale gold mining in Ghana—Part 1: human health review. Int J Environ Res Public Health. 2015; 12(5): 5143–5176. Published online 2015 May 13. https://doi.org/10.3390/ijerph120505143. PMCID: PMC4454960.

  63. US EPA: Consumer and Commercial Products [containing mercury]. http://www.speciation.net/Database/Links/US-EPA-Consumer-and-Commercial-Products-containing-mercury-;i2582. Retrieved 2018.

  64. Heacock M, Kelly CB, Suk WA. E-waste: the growing global problem and next steps. Rev Environ Health. 2016;31(1):131–5. https://doi.org/10.1515/reveh-2015-0045. PMID: 26820178.

    Article  CAS  PubMed  Google Scholar 

  65. Xu X, Zeng X, Boezen HM, Huo X. E-waste environmental contamination and harm to public health in China. Front Med. 2015;9(2):220–8. https://doi.org/10.1007/s11684-015-0391-1. Epub 2015 Mar 25, PMID: 25808646.

    Article  PubMed  Google Scholar 

  66. Lau WK, Liang P, Man YB, Chung SS, Wong MH. Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China. Environ Sci Pollut Res Int. 2014;21(5):3813–25. https://doi.org/10.1007/s11356-013-2372-8.. Epub 2013 Nov 28, PMID: 24288065.

    Article  CAS  PubMed  Google Scholar 

  67. Xu X, Zeng X, Boezen HM, Huo X. E-waste environmental contamination and harm to public health in China. Front Med. 2015;9(2):220–8. https://doi.org/10.1007/s11684-015-0391-1.. Epub 2015 Mar 25. PMID: 25808646

    Article  PubMed  Google Scholar 

  68. Julander A, Lundgren L, Skare L, Grandér M, Palm B, Vahter M, Lidén C. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden. Environ Int. 2014;73:243–51. https://doi.org/10.1016/j.envint.2014.07.006. Epub 2014 Aug 27, PMID: 25300751.

    Article  CAS  PubMed  Google Scholar 

  69. Hussain M, Mumtaz S. E-waste: impacts, issues and management strategies. Rev Environ Health. 2014;29(1–2):53–8. https://doi.org/10.1515/reveh-2014-0016., PMID: 24695030.

    Article  PubMed  Google Scholar 

  70. Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J. Mercury in marine and oceanic waters-a review. Water Air Soil Pollut. 2016;227(10):371.. Epub 2016 Sep 7, PMID: 27656005.

    Article  Google Scholar 

  71. Vilizzi L, Tarkan AS. Bioaccumulation of metals in common carp (Cyprinus carpio L.) from water bodies of Anatolia (Turkey): a review with implications for fisheries and human food consumption. Environ Monit Assess. 2016;188(4):243. https://doi.org/10.1007/s10661-016-5248-9.. Epub 2016 Mar 23, PMID: 27007291.

    Article  CAS  PubMed  Google Scholar 

  72. Chételat J, Braune B, Stow J, Tomlinson S. Special issue on mercury in Canada’s north: summary and recommendations for future research. Sci Total Environ. 2015;509–510:260–2. https://doi.org/10.1016/j.scitotenv.2014.06.063., PMID: 25669603.

    Article  CAS  PubMed  Google Scholar 

  73. Rowe CL. Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study. Sci Total Environ. 2014;485–486:490–6. https://doi.org/10.1016/j.scitotenv.2014.03.119. Epub 2014 Apr 16, PMID: 24742559.

    Article  CAS  PubMed  Google Scholar 

  74. Praveena SM, de Burbure C, Aris AZ, Hashim Z. Mini review of mercury contamination in environment and human with an emphasis on Malaysia: status and needs. Rev Environ Health. 2013;28(4):195–202. https://doi.org/10.1515/reveh-2013-0011. PMID: 24317783.

    Article  CAS  PubMed  Google Scholar 

  75. Griggs MB. Mercury scrubbers on power plants clean up other pollutants, too. Popular Science. 2015.

    Google Scholar 

  76. Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Waters KM, Harding, A. Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S. Environ Sci Technol. 2015. ISSN 0013-936X. https://doi.org/10.1021/acs.est.5b00800.

  77. Lee C-S, Lutcavage ME, Chandler E, Madigan DJ, Cerrato RM, Fisher NS. Declining mercury concentrations in Bluefin Tuna reflect reduced emissions to the North Atlantic Ocean. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b04328, 2016.

  78. Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J. Mercury in marine and oceanic waters-a review. Water Air Soil Pollut. 2016;227(10):371.. Epub 2016 Sep 7, PMID: 27656005.

    Article  Google Scholar 

  79. Roller M. In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. Mutat Res. 2011;727(3):72–85. https://doi.org/10.1016/j.mrrev.2011.03.002. Epub 2011 Mar 30.

    Article  CAS  PubMed  Google Scholar 

  80. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA. Daru. Current approaches of the management of mercury poisoning: need of the hour. 2(22):46. https://doi.org/10.1186/2008-2231-22-46. 2014.

Download references

Acknowledgements

This work was supported by the National Institutes of Health CounterACT program through the National Institutes of Arthritis and Musculoskeletal and Skin Diseases U54AR055073, by ES005022 and by T32ES007148 (GCW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane E. Heck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heck, D.E. et al. (2020). Chapter 13: Technology vs. Mercury: The Metal That Scars Civilization. In: Murthy, P., Ansehl, A. (eds) Technology and Global Public Health. Springer, Cham. https://doi.org/10.1007/978-3-030-46355-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46355-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46354-0

  • Online ISBN: 978-3-030-46355-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics