Skip to main content

Impact of Mercury and Its Toxicity on Health and Environment: A General Perspective

  • Chapter
  • First Online:
Mercury Toxicity

Part of the book series: Environmental Science and Engineering ((ESE))

  • 155 Accesses

Abstract

Mercury, which has been used since ancient times can also cause severe threats to human health and the environment. It exists in various forms (like metallic, inorganic, and organic), and each carries its own health burden. Its ability to be transported long distances is an environmental threat that can affect far-away ecosystems and wildlife. Notable mercury-related incidents such as Minamata, Iraq, Grassy Narrows, Kodaikanal, and others shook the world. In addition, its widespread industrial use poses a high risk of exposure. Major threats posed in healthcare are artisanal and small-scale gold mining (ASGM), scientific applications, and electrical industries. Mercury enters the human body both through inhalation and/or ingestion, inducing a range of detrimental cellular changes. It binds with the sulfhydryl and selenohydryl groups on albumin present in the plasma, disrupting receptors, and intracellular signals. It induces the production of free radicals and alters cellular redox potential. Additionally, it can disrupt cellular signaling pathways, involved in cell growth, differentiation, and apoptosis. Its permeability across the blood–brain barrier makes it severely neurotoxic, especially CH3-Hg (methylation mainly caused by microbes) binds to thiol-containing molecules like cysteine to form CH3-Hg-Cys and readily crosses the blood–brain barrier, damages the cerebellum and visual cortex. Mercury can induce post-translational changes affecting protein biosynthesis. Besides, the digestive, respiratory, muscular, and renal systems are also affected. Mercury produces oxidative stress, triggers autoimmunity and damages DNA, mitochondria, and lipid membranes. Its disposition in the CNS suggests its potential role in the pathogenesis of multiple sclerosis, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), and glial tumors. Several methods for controlling mercury pollution exist but the use of nano-adsorbents and bioremediation are most common. As a holistic approach, phasing out mercury use, replacing it with suitable substitutes, proper waste disposal, continuous monitoring and evaluation, and enforcing strict legislation seems to be a practical option. WHO and the national governments have provided the restrictions and permissible limits for mercury use. Worth mentioning is the implementation of the Minamata Convention to control and reduce global mercury emissions and releases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Tikriti K, Al-Mufti A (1976) An outbreak of organomercury poisoning among Iraqi farmers. Bull World Health Organ 53(Suppl):15

    Google Scholar 

  • Al-Yaari M, Saleh TA (2022) Mercury removal from water using a novel composite of polyacrylate-modified carbon. ACS Omega 7(17):14820–14831

    Article  CAS  Google Scholar 

  • ATSDR U (1999) Toxicological profile for mercury (update). US Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Attar AM, Kharkhaneh A et al (2012) Serum mercury level and multiple sclerosis. Biol Trace Elem Res 146:150–153

    Article  CAS  Google Scholar 

  • Balali-Mood M, Naseri K et al. (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 227

    Google Scholar 

  • Berg T, Fjeld E et al (2006) Atmospheric mercury in Norway: contributions from different sources. Sci Total Environ 368(1):3–9

    Article  CAS  Google Scholar 

  • Bessbousse H, Rhlalou T et al (2010) Mercury removal from wastewater using a poly (vinylalcohol)/poly (vinylimidazole) complexing membrane. Chem Eng J 164(1):37–48

    Article  CAS  Google Scholar 

  • Bharti R, Wadhwani KK et al (2010) Dental amalgam: an update. J Conservative Dent JCD 13(4):204

    Article  Google Scholar 

  • Bhawan P, Nagar EA (2020) Central pollution control board

    Google Scholar 

  • Board CPC (2009) Mercury-environmental implications and toxicity

    Google Scholar 

  • Branch UC (2008) The global atmospheric mercury assessment: sources, emissions and transport. UNEP-Chemicals, Geneva

    Google Scholar 

  • Bravo AG, Cosio C (2020) Biotic formation of methylmercury: a bio–physico–chemical conundrum. Limnol Oceanogr 65(5):1010–1027

    Article  CAS  Google Scholar 

  • Chang LW, Hartmann HA (1972) Ultrastructural studies of the nervous system after mercury intoxication: II. Pathological changes in the nerve fibers. Acta Neuropathol 20:316–334

    Article  CAS  Google Scholar 

  • Chemicals U. Minamata Convention on mercury

    Google Scholar 

  • Commission O. North sea conferences

    Google Scholar 

  • Cooke Andrews J (2006) Mercury speciation in the environment using X-ray absorption spectroscopy. Recent Dev Mercury Sci 1–35

    Google Scholar 

  • Date SS, Parks JM et al (2019) Kinetics of enzymatic mercury methylation at nanomolar concentrations catalyzed by HgcAB. Appl Environ Microbiol 85(13):e00438-e419

    Article  CAS  Google Scholar 

  • Du W, Yin L et al (2014) Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated sorbents. Ind Eng Chem Res 53(2):582–591

    Article  CAS  Google Scholar 

  • Dufault R, LeBlanc B et al (2009) Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environ Health 8(1):1–6

    Article  Google Scholar 

  • Environment R. M. o. t. Norway's Action Plan for Reducing Mercury Releases

    Google Scholar 

  • Esdaile LJ, Chalker JM (2018).The mercury problem in artisanal and small‐scale gold mining. Chem–A Eur J 24(27):6905–6916

    Google Scholar 

  • Fisher JF, Organization WH (2003) Elemental mercury and inorganic mercury compounds: human health aspects. World Health Organization

    Google Scholar 

  • Fitzgerald W, Lamborg C (2003) Geochemistry of mercury in the environment. Treatise Geochem 9:612

    Google Scholar 

  • Fitzgerald WF, Engstrom DR et al (2005) Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and Arctic depletion. Environ Sci Technol 39(2):557–568

    Article  CAS  Google Scholar 

  • GEF. Development of a National Implementation Plan in India as a First Step to Implement the Stockholm Convention on Persistent Organic Pollutants (POPs)

    Google Scholar 

  • Gonzalez E, Livengood C et al (1999) Elemental mercury removal using a wet scrubber. Argonne National Lab., IL (US)

    Google Scholar 

  • Gov I (2006) Governor Blagojevich signs new law to reduce toxic mercury emissions

    Google Scholar 

  • Gray JE, Hines ME (2006) Mercury: distribution, transport, and geochemical and microbial transformations from natural and anthropogenic sources. Appl Geochem 21(11):1819–1820

    Article  CAS  Google Scholar 

  • Gustin MS, Lindberg SE et al (2008) An update on the natural sources and sinks of atmospheric mercury. Appl Geochem 23(3):482–493

    Article  CAS  Google Scholar 

  • Gworek B, Dmuchowski W et al (2020) Mercury in the terrestrial environment: a review. Environ Sci Eur 32(1):1–19

    Article  Google Scholar 

  • Halbach S, Clarkson T (1978) Enzymatic oxidation of mercury vapor by erythrocytes. Biochimica et Biophysica Acta (BBA)-Enzymol 523(2):522–531

    Google Scholar 

  • Henneberry YK, Kraus TE et al (2011) Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Sci Total Environ 409(3):631–637

    Article  CAS  Google Scholar 

  • Horowitz HM, Jacob DJ et al (2014) Historical mercury releases from commercial products: global environmental implications. Environ Sci Technol 48(17):10242–10250

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Google Scholar 

  • Jasinski SM (1995) The materials flow of mercury in the United States. Resour Conserv Recycl 15(3–4):145–179

    Article  Google Scholar 

  • Jitaru P, Adams F (2004) Toxicity, sources and biogeochemical cycle of mercury. Journal de Physique IV (Proceedings), EDP sciences

    Google Scholar 

  • Kahrizi F, Salimi A et al (2016) Repeated administration of mercury intensifies brain damage in multiple sclerosis through mitochondrial dysfunction. Iran J Pharm Res: IJPR 15(4):834

    CAS  Google Scholar 

  • Ke T, Gonçalves FM et al (2019) Post-translational modifications in MeHg-induced neurotoxicity. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1865(8):2068–2081

    Google Scholar 

  • Keating MH, Mahaffey K et al (1997) Mercury study report to congress, volume 1. Executive summary, Environmental Protection Agency, Research Triangle Park, NC (United States)

    Google Scholar 

  • Kotwal D, Shewale N et al (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinform Pharm Chem Sci 4(2)

    Google Scholar 

  • Lakshmanan S, Murugesan T (2014) The chlor-alkali process: work in progress. Clean Technol Environ Policy 16:225–234

    Article  CAS  Google Scholar 

  • Lamborg CH, Fitzgerald WF et al (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66(7):1105–1118

    Article  CAS  Google Scholar 

  • Langford N, Ferner R (1999) Toxicity of mercury. J Hum Hypertens 13(10):651–656

    Article  CAS  Google Scholar 

  • Liu J, Shi J-Z et al (2008) Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med 233(7):810–817

    Article  CAS  Google Scholar 

  • Liu Y, Chen H et al (2022) Detection and remediation of mercury contaminated environment by nanotechnology: progress and challenges. Environ Pollut 293:118557

    Article  CAS  Google Scholar 

  • Magos L, Halbach S et al (1978) Role of catalase in the oxidation of mercury vapor. Biochem Pharmacol 27(9):1373–1377

    Article  CAS  Google Scholar 

  • Masur LC (2011) A review of the use of mercury in historic and current ritualistic and spiritual practices. Altern Med Rev 16(4):314–320

    Google Scholar 

  • Matta G, Gjyli L (2016) Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci 9(2):718–725

    CAS  Google Scholar 

  • McCarthy D, Edwards GC et al (2017) An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere 184:694–699

    Article  CAS  Google Scholar 

  • Mercury N. A. T. F. o. North American Regional Action Plan on Mercury

    Google Scholar 

  • Nandiyanto A, Ragadhita R et al (2023) Research trend on the use of mercury in gold mining: Literature review and bibliometric analysis. Moroccan J Chem 11(1):11–11 (2023) 2001–2019

    Google Scholar 

  • Newman O, Palmer D (1978) Collection of atomic mercury by electrostatic precipitators. Nature 275(5680):526–527

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nriagu J, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci Total Environ 304(1–3):3–12

    Article  CAS  Google Scholar 

  • Nriagu JO (1979) Biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press

    Google Scholar 

  • Ogata M, Aikoh H (1983) Oxidation of metallic mercury by catalase in relation to acatalasemia.[Mice; man]. Ind Health (Kawasaki, Jpn.);(Japan) 21(4)

    Google Scholar 

  • Organization WH (2005) Mercury in drinking-water

    Google Scholar 

  • Otani Y, Kanaoka C et al (1988) Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ Sci Technol 22(6):708–711

    Article  CAS  Google Scholar 

  • Pacyna E, Pacyna J et al (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35(17):2987–2996

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM et al (2006) Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370(1):147–156

    Article  CAS  Google Scholar 

  • Pamphlett R, Kum Jew S (2018) Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 31(5):807–819

    Article  CAS  Google Scholar 

  • Rani L, Srivastav AL et al (2021) Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere 280:130654

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55(3):319–331

    Article  CAS  Google Scholar 

  • Rhee S-W (2015) Control of mercury emissions: policies, technologies, and future trends. Energy Emission Control Technol 1–15

    Google Scholar 

  • Rustagi N, Singh R (2010) Mercury and health care. Indian J Occup Environ Med 14(2):45

    Article  Google Scholar 

  • Sánchez-Alarcón J, Milić M et al (2021) Genotoxicity of mercury and its derivatives demonstrated in vitro and in vivo in human populations studies. Systematic review. Toxics 9(12):326

    Article  Google Scholar 

  • Seigneur C, Vijayaraghavan K et al (2004) Global source attribution for mercury deposition in the United States. Environ Sci Technol 38(2):555–569

    Article  CAS  Google Scholar 

  • Selin NE, Selin H (2006) Global politics of mercury pollution: the need for multi-scale governance. Rev Eur Commun Int Environ Law 15(3):258–269

    Article  Google Scholar 

  • Shetty SK, Lin C-J et al (2008) Model estimate of mercury emission from natural sources in East Asia. Atmos Environ 42(37):8674–8685

    Article  CAS  Google Scholar 

  • Shimizu R, Gulezian G (1998) The great lakes binational toxics strategy: Canada-United states strategy for the virtual elimination of persistent toxic substances. Can Water Resourc J 23(1):77–83

    Article  Google Scholar 

  • Siblerud R, Mutter J (2020) A hypothesis and additional evidence that mercury may be an etiological factor in multiple sclerosis. J Multiple Sclerosis 7(3):1–7

    Google Scholar 

  • Siblerud R, Mutter J et al (2019) A hypothesis and evidence that mercury may be an etiological factor in Alzheimer’s disease. Int J Environ Res Public Health 16(24):5152

    Article  CAS  Google Scholar 

  • Smith CM, Trip LJ (2005) Mercury policy and science in northeastern North America: the mercury action plan of the New England governors and eastern Canadian premiers. Ecotoxicology 14(1–2):19–35

    Article  CAS  Google Scholar 

  • Spencer A (2000) Dental amalgam and mercury in dentistry. Aust Dent J 45(4):224–234

    Article  CAS  Google Scholar 

  • Stein ED, Cohen Y et al (1996) Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26(1):1–43

    Article  CAS  Google Scholar 

  • Tabatabaei S-A, Ariafar S et al (2022) Toxic environmental factors and multiple sclerosis: a mechanistic view

    Google Scholar 

  • Ullrich SM, Tanton TW et al (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    Article  CAS  Google Scholar 

  • Urgun-Demirtas M, Benda PL et al (2012) Achieving very low mercury levels in refinery wastewater by membrane filtration. J Hazard Mater 215:98–107

    Article  Google Scholar 

  • USEPA. International actions for reducing mercury emissions and use

    Google Scholar 

  • Vasudevan S, Lakshmi J et al (2012) Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ Sci Pollut Res 19:2734–2744

    Article  CAS  Google Scholar 

  • Vishal Rathee SSB Development of machine learning-based system for mercury (Hg) detection. Neuro Quantol 20(9):2119–2124

    Google Scholar 

  • Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133

    Article  Google Scholar 

  • Wang L, Wang M et al (2020) Enhanced removal of trace mercury from surface water using a novel Mg2Al layered double hydroxide supported iron sulfide composite. Chem Eng J 393:124635

    Article  CAS  Google Scholar 

  • Yao T, Duan Y et al (2018) Investigation of mercury adsorption and cyclic mercury retention over MnOx/γ-Al2O3 sorbent. Chemosphere 202:358–365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support received from Fr. Dejus J.R. (for flowcharts and illustrations) and Dr. Arijit Basu (for scholarly advice).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basu, M. (2023). Impact of Mercury and Its Toxicity on Health and Environment: A General Perspective. In: Kumar, N. (eds) Mercury Toxicity. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-7719-2_4

Download citation

Publish with us

Policies and ethics