Skip to main content

Fog Computing Application for Biometric-Based Secure Access to Healthcare Data

  • Chapter
  • First Online:
Fog Computing for Healthcare 4.0 Environments

Abstract

Healthcare 4.0 standards propose a personalized and precise medicine for effective therapy based on patient’s genetic, environmental, and lifestyle parameters. Healthcare 4.0 standards promote a patient-centric healthcare service delivery at his doorstep. This system enables patient’s healthcare data sharing online among the doctors, hospitals, and other healthcare service providers to leverage the efficiency in healthcare services management. The foolproof authentication mechanism forms a gateway to any security system to ensure integrity, confidentiality, and authorization to prevent any intrusions into the healthcare systems. Today biometric security mechanisms are gaining significance in the Internet of Things (IoT) network security domain. Biometric technology analyzes an individual end-user’s physiological, behavioral, or morphological traits such as the face, fingerprint, iris, retina, voice, and handwritten signatures for authentication purposes. Authors have reviewed the relevant literature on biometric authentication systems and carried out a comparative study of the various biometric techniques, results, and applications. The national and international status of healthcare data protection acts and tools used for biometric authentication was discussed. This chapter deals with a complete design process of multi-mode biometric-based security layer to provide secure authentication to access healthcare data at the edge devices deployed in hospitals and patient’s smart homes. Authors have discussed the prototype design for authentication of end-users of healthcare data and carried out a face recognition experiment for authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13. https://doi.org/10.1016/j.compeleceng.2018.08.015.

    Article  Google Scholar 

  2. Hamidi, H. (2019). An approach to developing smart health using the internet of things and authentication based on biometric technology. Future Generation Computer Systems, 91, 434–449. https://doi.org/10.1016/j.future.2018.09.024.

    Article  Google Scholar 

  3. Wu, W., Pirbhulal, S., & Li, G. Adaptive computing-based biometric security for intelligent medical applications. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3855-9.

  4. Kok Seng, Wong Myung, Ho Kim. (2012). Secure biometric based authentication for cloud computing (pp. 86-101). Second international conference, CLOSER, Porto, Portugal, April 18-21. doi:10.1007/978-3-319-04519-1_6.

    Google Scholar 

  5. J. Wayman, A. Jain, D. Maltoni, D. Maio, An introduction to biometric authentication systems, Biometric Systems. pp. 1-20, Springer, London, (2005), [Online]. doi:https://doi.org/10.1007/1-84628-064-8_1.

  6. Punithavathi, P., Geetha, S., Marimuthu, K., Hafizul Islam, S. K., Hassan, M. M., & Choo, K.-K. R. (2019). A lightweight machine learning based authentication framework for smart IoT devices. Information Sciences, 484, 255–268. https://doi.org/10.1016/j.ins.2019.01.073.

    Article  Google Scholar 

  7. Sarier, N. D., Meadows, C., & Fernandez, G. C. (2012). Security notions of biometric remote authentication revisited, STM, 2011. LNCS, 7170, 72–89. https://doi.org/10.1007/978-3-642-29963-6_7.

    Article  Google Scholar 

  8. Vaniprabha, A., & Poongodi, P. (2017). Augmented lightweight security scheme with access control model for wireless medical sensor networks. Cluster Computing, 22(1), 1–12. https://doi.org/10.1007/s10586-017-1669-7.

    Article  Google Scholar 

  9. Maneesh, U., Anoop, M., Namboodiri, K., & Srinathan, C. V. J. (2009). Efficient biometric verification in the encrypted domain, ICB 2009. LNCS, 5558, 899–908. https://doi.org/10.1007/978-3-642-01793-3_91.

    Article  Google Scholar 

  10. Une, M., Otsuka, A., & Imai, H. (2007). Wolf attack probability: A new security measure in biometric authentication systems, ICB 2. LNCS., 4642, 396–406. https://doi.org/10.1007/978-3-540-74549-5_42.

    Article  Google Scholar 

  11. Tang, Q., Bringer, J., Chabanne, H., & Pointcheval, D. (2008). A formal study of the privacy concerns in biometric-based remote authentication schemes. In: L. Chen, Y. Mu, W. Susilo (Eds.,) Information Security Practice and Experience. ISPEC 2008. Lecture Notes in Computer Science (pp. 56-70), Berlin: Springer. doi: 10.1007/978-3-540-79104-1_5.

    Google Scholar 

  12. Sanchez-Reillo, R., Alonso-Moreno, R., & Liu-Jimenez, J. (2013). Smart cards to enhance security and privacy in biometrics. In: Campisi P. (Ed.,) Security and privacy in biometrics (pp. 239-274). London: Springer. doi: 10.1007/978-1-4471-5230-9_10

    Google Scholar 

  13. Awad, A. I., Hassanien, A. E., & Baba, K. (2013). A secure framework for OTA smart device ecosystems using ECC encryption and biometrics. Berlin: Springer. https://doi.org/10.1007/978-3-642-40597-6_18.

    Book  Google Scholar 

  14. Salaiwarakul, M. D., & Ryan, C. L. (2008). Verification of integrity and secrecy properties of a biometric authentication protocol. In W. Susilo (Ed.), ISPEC LNCS (pp. 1–13). Berlin: Springer. https://doi.org/10.1007/978-3-540-79104-1_1.

    Chapter  Google Scholar 

  15. Hataichanok, S., & Theoharidou, M. (2012). Multi-modal Behavioural Biometric Authentication for Mobile Devices, SEC 2012. IFIP AICT, 376, 465–474. Retrieved from https://link.springer.com/content/pdf/10.1007%2F978-3-642-30436-1_38.pdf.

    Google Scholar 

  16. Quan, Z., Chunming, T., Xianghan, Z., et al. (2015). A secure user authentication protocol for sensor network in data capturing. J Cloud Comp, 4, 6. https://doi.org/10.1186/s13677-015-0030-z.

    Article  Google Scholar 

  17. Phan, R. C. W., Whitley, J. N., & Parish, D. J. (2009). On the Design of Forgiving Biometric Security Systems. In J. Camenisch & D. Kesdogan (Eds.), iNetSec 2009 – Open research problems in network security. IFIP advances in information and communication technology (Vol. 309). Berlin: Springer. https://doi.org/10.1007/978-3-642-05437-2_1.

    Chapter  Google Scholar 

  18. Tran, N., & Dang, K. (2015). A multi-factor biometric-based remote authentication using fuzzy commitment and non-invertible transformation. IFIP International Federation for Information Processing, 9357, 77–88. https://doi.org/10.1007/978-3-319-24315-3_8.

    Article  Google Scholar 

  19. Hamada, M., Ibrahim, S. K., Ashok, K. D., & Odelu, V. (2018). Attribute-based authentication on the cloud for thin clients. Journal of Super-computing, 74, 5813–5845. https://doi.org/10.1007/s11227-016-1948-8.

    Article  Google Scholar 

  20. Pirbhulal, S., Oluwarotimi, W. S., Wu, W., Sangaiah, A. K., & Li, G. (2019). A joint resource-aware and medical data security framework for wearable healthcare systems. Future Generation Computer Systems, 95, 382–391. https://doi.org/10.1016/j.future.2019.01.008.

    Article  Google Scholar 

  21. Jigna Hathaliya, J., Tanwar, S., Tyagi, S., & Kumar, N. Securing electronic healthcare records in healthcare 4.0: A biometric based approach. doi: 10.1016/j.compeleceng.2019.04.017.

    Google Scholar 

  22. Abdmeziem, M. R., & Tandjaoui, D. (2015). An end-to-end secure key management protocol for e-health applications. Computers, and Electrical Engineering, 44, 184–197. https://doi.org/10.1016/j.ins.2019.01.073.

    Article  Google Scholar 

  23. Challa, S., Das, A. K., Odelu, V., Kumar, N., Kumari, S., Khane, M. K., & Athanasios Vasilakos, V. (2018). An efficient ECC based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Computers, and Electrical Engineering, 69, 534–554. https://doi.org/10.1016/j.compeleceng.2017.08.003.

    Article  Google Scholar 

  24. Guan, Z., Zhang, Y., Wu, L., Wu, J., Li, J., Yinglong, M., & Jingjing, H. (2019). APPA: An anonymous and privacy-preserving data aggregation scheme for fog-enhanced IoT. Journal of Network and Computer Applications, 125, 82–92. https://doi.org/10.1016/j.jnca.2018.09.019.

    Article  Google Scholar 

  25. Kashish Shakil, A., Farhana Zareen, J., Alam, M., Jabin, S., & BAMHealthCloud. (2017). A biometric authentication and data management system for healthcare data in Cloud, Journal of King Saud University. Computer and Information Sciences, 32, 57. https://doi.org/10.1016/j.jksuci.2017.07.001.

    Article  Google Scholar 

  26. Farrukh Aslam Khana, Aftab Alia, Haider Abbasb, Nur Al, Hasan Haldar. A cloud-based healthcare framework for security and patient’s data privacy using wireless body area networks. The 2nd International Workshop on Communications and Sensor Networks (ComSense-2014). Retrieved from http://creativecommons.org/licenses/by-nc-nd/3.0/

  27. Sanaz Rahimi Moosavi, Tuan Nguyen Gia, Amir, Mohammad Rahmani, Ethiopia Nigussie, Seppo Virtanen, Jouni Isoaho, Hannu Tenhunen. (2015). SEA: A secure and efficient authentication and authorization architecture for IoT based healthcare using smart gateways. Retrieved from http://creativecommons.org/licenses/by-nc-nd/4.0/

  28. Dhillon, P. K., & Kalra, S. (2017). A lightweight biometrics based remote user authentication scheme for IoT services. Journal of Information Security and Applications, 34, 255–270. Retrieved from https://daneshyari.com/article/preview/4955718.pdf.

    Article  Google Scholar 

  29. Yeluri, R., & Castro-Leon, E. (2014). Identity Management and Control for Clouds. In Building the Infrastructure for Cloud Security (pp. 141–159). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4302-6146-9_7.

    Chapter  Google Scholar 

  30. Mo, J., Hu, Z., & Lin, Y. (2018). Remote user authentication and key agreement for the mobile client-server environments on elliptic curve cryptography. The Journal of Super-computing, 74, 5927–5943. https://doi.org/10.1007/s11227-018-2507-2.

    Article  Google Scholar 

  31. Dheerendra, M., Vijayakumar, P., Venkatasamy, S., Ruhul, K., Hafizul, A., Islam, S. K., & Gope, P. (2018). Efficient authentication protocol for secure multimedia communications in IoT-enabled wireless sensor networks. Multimed Tools Applications, 77, 18295–18325. https://doi.org/10.1007/s11042-017-5376-4.

    Article  Google Scholar 

  32. Lin, J. L., Hsu, H. L., Jong, T. L., & Hsu, W. H. (2011). Biometric authentication. In P. S. P. Wang (Ed.), Pattern recognition, machine intelligence and biometrics (pp. 607–631). Berlin: Springer. https://doi.org/10.1007/978-3-642-22407-2_23.

    Chapter  Google Scholar 

  33. Lee, H. W., & Kwon, T. (2007). Biometric digital key mechanisms for Telebiometric authentication based on biometric certificate. In C. Stephanidis (Ed.), Universal Acess in human computer interaction. Coping with diversity. UAHCI 2007 (Lecture notes in computer science) (Vol. 4554). Berlin: Springer. https://doi.org/10.1007/978-3-540-73279-2_48.

    Chapter  Google Scholar 

  34. Montecchi, L., Lollini, P., Bondavalli, A., & La Mattina, E. (2012). Quantitative security evaluation of a multi-biometric authentication system. In F. Ortmeier & P. Daniel (Eds.), Computer safety, reliability, and security. SAFECOMP 2012 (Lecture notes in computer science) (Vol. 7613). Berlin: Springer. https://doi.org/10.1007/978-3-642-33675-1_19.

    Chapter  Google Scholar 

  35. Michel Owayjan, Amer Dergham, Gerges Haber, Nidal Fakih, Ahmad Hamoush, Elie Abdo. Face recognition security system, Springer, Berlin (2013). Retrieved from https://www.researchgate.net/publication/259027363

  36. Ali Alheeti, K. M. (2011). Biometric Iris recognition based on hybrid technique. International Journal on Soft Computing (IJSC), 2(4). https://doi.org/10.5121/ijsc.2011.24011.

  37. Shubhika Ranjan, Prabu S, Swarnalatha P, Magesh G, Ravee Sundararajan, Iris Recognition System, International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395–0056, Vol: 04, Issue: 12, (2017). Retrieved from https://www.ijeat.org/wp-content/uploads/papers/v8i5S3/E11030785S319.pdf

  38. Chanchaichujit, J., Tan, A., Meng, F., Eaimkhong, S. Healthcare 4.0: Next generation processes with the latest technologies. Retrieved from https://link.springer.com/book/10.1007/978-981-13-8114-0

  39. J. Vora, P. Dev Murari, S. Tanwar, S. Tyagi, N. Kumar and M. S. Obaidat. Blind signatures based secured e-healthcare system International Conference On Computer, Information and Telecommunication Systems (CITS), Colmar, 2018, pp. 1–5. Retrieved from https://ieeexplore.ieee.org/document/8440186

  40. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, R. (2018). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128(2019), 90–104. https://doi.org/10.1016/j.jnca.2018.12.013.

    Article  Google Scholar 

  41. Summary of the HIPAA Security Rule. HHS.gov. Retrieved November 30, 2019, from https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations

  42. HIPAA Privacy Rule - HHS.gov. Retrieved November 30, 2019, from https://www.hhs.gov/hipaa/for-professionals/privacy/index.html.

  43. The future of governance of health data in India. Ikigai Law. Retrieved November 30, 2019, from https://www.ikigailaw.com/disha-and-the-draft-personal-data-protection-bill-2018-looking-at-the-future-of-governance-of-health-data-in-india.

  44. DISHA and the draft Personal Data Protection Bill … - Ikigai Law. Retrieved November 30, 2019, from https://marksmanhealthcare.com/indias-disha-different-global-patient-data-protection-laws

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekantha Desai Karanam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai Karanam, S., Shetty, S., Nithin, K.U.G. (2021). Fog Computing Application for Biometric-Based Secure Access to Healthcare Data. In: Tanwar, S. (eds) Fog Computing for Healthcare 4.0 Environments. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46197-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46197-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46196-6

  • Online ISBN: 978-3-030-46197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics