Skip to main content

Natural Arbuscular Mycorrhizal Colonization of Wheat and Maize Crops Under Different Agricultural Practices

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Arbuscular mycorrhiza is a symbiotic association between arbuscular mycorrhiza fungi and the most of plants species. Among many benefits, mycorrhizal symbiosis increases soil exploration and nutrient uptake by plant roots, provide resistance to both biotic and abiotic stress factors, and enhances soil particles aggregation. Due to this, mycorrhizal symbiosis is important to ecosystems sustainability. It is well known that some agricultural practices, such as monoculture, chemical fertilization or an indiscriminate use of agrochemicals, could reduce or eliminate the ecosystem mycorrhizal potential. In this chapter, results related to the effects of plant growth-promoting inoculation and chemical fertilization on natural arbuscular mycorrhization from wheat and maize field experiments are shown and exhaustively discussed. Due to the complexity of interactions in the rhizosphere, a knowledge improvement about these interactions is essential to increase grain production through more sustainable agricultural practices with the main aim of feeding the growing population in our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosystem Environ 35:121–150

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    CAS  PubMed  Google Scholar 

  • Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. In: National Research Council (ed) Professional societies and ecologically based pest management: proceedings of a workshop. National Academy Press, Washington DC, p 60

    Google Scholar 

  • Antoun H, Prévost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Cham, pp 1–38

    Google Scholar 

  • Arthurson V, Hjort K, Muleta D, Jäderlund L, Granhall U (2011) Effects on Glomus mosseae root colonization by Paenibacillus polymyxa and Paenibacillus brasilensis strains as related to soil P-availability in winter wheat. Appl Environ Soil Sci 2011(3):1–9

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Google Scholar 

  • Barea JM (2004) Impacto de las micorrizas en la calidad del suelo y la productividad vegetal en sistemas agrícolas y espacios naturales. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. Editoral Facultad de Agronomía, Buenos Aires, pp 7–11

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81:343–351

    CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256

    CAS  Google Scholar 

  • Bellone CH, Carrizo de Bellone S (2008) Inoculaciones con Azospirillum brasilense en producciones agrícolas del NOA. In: Cassán FC, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 239–250

    Google Scholar 

  • Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992

    CAS  PubMed  Google Scholar 

  • Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457

    PubMed  Google Scholar 

  • Cassán F, Díaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Google Scholar 

  • Cassán FD, García de Salamone IE (2008) Azospirillum sp.: cell physiology. Plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, Argentina. ISBN: 978-987-98475-8-9.

    Google Scholar 

  • Collins-Johnson N (1993) Can fertilization of soil select les mutualistic mycorrhizae? Ecol Appl 2:749–757

    Google Scholar 

  • Collins-Johnson N, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Google Scholar 

  • Corkidi L, Rowland DL, Johnson NC, Allen EB (2002) Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 240:299–310

    CAS  Google Scholar 

  • Cosme M, Wurst S (2013) Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol Biochem 57:436–443

    CAS  Google Scholar 

  • Covacevich F, Echeverría HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenus mycorrhizal colonization at field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9

    Google Scholar 

  • Di Salvo LP, García de Salamone IE (2019) PGPR inoculation and chemical fertilization of cereal crops, how do the plants and their rhizosphere microbial communities’ response? In: Singh DP, Gupta VK, Prabha R (eds) Microbial interventions in agriculture and environment. Vol. 2. Rhizosphere, microbiome and agro-ecology. Springer, Singapore, pp 123–148

    Google Scholar 

  • Di Salvo LP, Silva E, Teixeira KR, Esquivel-Cote R, Pereyra MA, García de Salamone IE (2014) Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria. J Basic Microbiol 54:1310–1321

    PubMed  Google Scholar 

  • Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018a) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize grain yield and modified rhizosphere microbial communities. App Soil Ecol 126:113–120

    Google Scholar 

  • Di Salvo LP, Ferrando L, Fernández Scavino A, García de Salamone IE (2018b) Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after application of Azospirillum brasilense and nitrogen fertilizer under field conditions. Plant Soil 424:405–417

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-González C, Caballero-Mellado J, Aguirre J, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–887

    Google Scholar 

  • Dodd JC, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn-sown cereals. Soil Biol Biochem 18:149–154

    Google Scholar 

  • Douds DD Jr, Schenck NC (1990a) Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Appl Environ Microbiol 56:413–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douds DD Jr, Schenck NC (1990b) Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol 116:621–627

    CAS  Google Scholar 

  • Douds DD Jr, Galvez L, Franke-Snyder M, Reider C, Drinkwater LE (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosystem Environ 65:257–266

    Google Scholar 

  • Ellis JR, Roder W, Mason SC (1992) Grain sorghum-soybean rotation and fertilization influence on vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 56:789–794

    Google Scholar 

  • Escobar Ortega JS, García de Salamone IE (2017) Dynamics of rhizosphere microbial communities of cover crops dried with glyphosate. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 17–34

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    CAS  PubMed  Google Scholar 

  • García de Salamone IE (2012) Use of soil microorganisms to improve plant growth and ecosystem sustainability. In: Caliskan M (ed) The molecular basis of plant genetic diversity. INTECH, Rijeka, Croatia, pp 233–258

    Google Scholar 

  • García de Salamone IE, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soils 21:193–196

    Google Scholar 

  • García de Salamone IE, Michelena R, Rodríguez A, Montemitoli I, Gatti S, Rorig M (2006) Ocurrencia de micorrizas vesículo arbusculares en plantas de maíz, soja y trigo en sistemas de siembra directa. Rev Fac Agron 26:67–72

    Google Scholar 

  • García de Salamone IE, Di Salvo LP, Escobar Ortega JS, Boa Sorte MP, Urquiaga S, Dos Santos Teixeira KR (2010) Field response of rice paddy crop to inoculation with Azospirillum: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric. Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Lebrón L, Lodge LJ, Bayman P (2012) Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico. ISRN Agronomy 2012 148042

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Smith DL, (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) form dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    CAS  PubMed  Google Scholar 

  • Mohammad MJ, Pan WL, Kennedy AC (1998) Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8:139–144

    Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorous deficiency. J Exp Bot 50:487–497

    CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions. Biol Fertil Soils 31:114–120

    Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Newman E (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370

    Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Kump P, Nečemer M, Tolrà R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    CAS  PubMed  Google Scholar 

  • Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten H (2018) Networks analyses can advance above-belowground ecology. Trends Plant Sci 23:759–768

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020) Endophytic Microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci, India Sect B: Biol Sci. https://doi.org/10.1007/s40011-020-01168-0

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    CAS  Google Scholar 

  • Ritchie S, Hanway J, Benson G (1982) How a corn plant develops. Iowa State Coop Ext Serv Spec Rep, p 48

    Google Scholar 

  • Rubio R, Boriea F, Schalchli C, Castillo C, Azcón R (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl Soil Ecol 23:245–255

    Google Scholar 

  • Ruíz-Sánchez M, Armada E, Munoz Y, García de Salamone IE, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    PubMed  Google Scholar 

  • Saito M, Oba H, Kojima T (2011) Effect of nitrogen on the sporulation of arbuscular mycorrhizal fungi colonizing several gramineous plant species. Soil Sci Plant Nutr 57:29–34

    CAS  Google Scholar 

  • Schalamuk S, Cabello M (2010) Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102:261–268

    CAS  PubMed  Google Scholar 

  • Schalamuk S, Velázquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16–22

    CAS  PubMed  Google Scholar 

  • Siqueira JO, Saggin-Júnior OJ (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255

    CAS  Google Scholar 

  • Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Google Scholar 

  • Trindade AV, Siqueira JO, Pinto de Almeida F (2001) Dependência micorrízica de variedades comerciais de mamoeiro. Pesqui Agropecu Bras 36:485–1494

    Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    PubMed  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Criti Rev Plant Sci 32:1–20

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for growth stage of cereals. Weed Res 14:415–421

    Google Scholar 

Download references

Acknowledgement

The work was partially supported by two projects FONCYT 2008 PICT1864 and UBACyT project 20020090100255, from the Ministerio de Ciencia y Técnica and Universidad de Buenos Aires in Argentina, respectively. LPDS had a postdoctoral scholarship of the National Council of Scientifical and Technical Research (CONICET) of Argentina. We specially want to mention and thank to Lic. Marilé Gamarnik, Lic. Ana Zambrano-Soledispa and Mr. Pedro Radio Brandoni for their invaluable contribution for this work. We are also grateful to Perdoménico’s family and the personal of both “El Correntino,” 30 de Agosto and “El Coronel,” Pehuajó, Buenos Aires, Argentina. Finally, we also want to mention and thank to Lic. Florencia D’Auria, Ing. Agr. Gabriel C. Cellucci, Ing. Agr. Claudio Acosta Andocilla, Ing. Agr. Guillermo López-Rondó, Mss. Ma. Ángeles Campillay, Mss. Ma. Eugenia Carlino, Mss. Carolina B. Nardini and Mr. Marcos Falabella, for their helping during the field sampling and laboratory determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés E. García de Salamone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Salvo, L.P., Groppa, M.D., García de Salamone, I.E. (2020). Natural Arbuscular Mycorrhizal Colonization of Wheat and Maize Crops Under Different Agricultural Practices. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_4

Download citation

Publish with us

Policies and ethics