Skip to main content

Molecular Imaging of Prostate Cancer

  • Chapter
  • First Online:
Prostate MRI Essentials
  • 1071 Accesses

Abstract

Molecular imaging with positron emission tomography (PET) has been increasingly taken into consideration in prostate cancer as this noninvasive imaging method targets certain biological aspects of tumors. PET is often merged with computed tomography (CT) or magnetic resonance imaging (MRI) for better anatomical localization. There are several different radiotracers with different value in the setting of primary diagnosis, staging, and biochemical recurrence (BCR) of prostate cancer (PCa).

18FDG PET/CT has a limited use for PCa with a higher sensitivity in localizing metastases than detection of primary PCa tumors and BCR. Use of 11C-Acetate PET/CT is not justified for primary prostate cancer detection over conventional imaging methods such as mpMRI. 11C-Acetate might be useful as an indicator of tumor aggressiveness in patients with BCR. Utility of 11C- or 18F-choline PET/CT for detection of primary PCa or nodal staging is not justified. Food and Drug Administration (FDA) approved 11C-choline PET/CT for evaluation of BCR; however, it has unsatisfactory sensitivity at low PSA levels (~0.5 ng/mL). 18F-FACBC has shown a poor performance in detection of primary PCa. FDA approved 18F-flucicloclocine for evaluation of BCR; however, despite showing high sensitivity, it has the disadvantage of having a high false-positive rate.

Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly upregulated in prostate cancer and weakly expressed in normal prostate tissue. PSMA expression is correlated with both grade and stage of the lesions representing disease aggressiveness. 68Ga-PSMA-11 PET/CT has demonstrated the highest value for BCR compared to other imaging methods even at low PSA levels. In addition, 68Ga-PSMA-11 PET/MR showed higher diagnostic performance in detection of primary PCa compared to mpMRI and PET alone. 18F-labeled PSMA agents (18F-DCFBC, 18F-DCFPyL, and 18F-PSMA-1007) have a longer half-life, better image resolution, improved lesion detection rate, and higher mean tumor-to-background ratio compared to 68Ga-PSMA tracers. 18F-PSMA-1007 has the advantage of hepatobiliary excretion, which can be useful in initial staging and evaluation of intraprostatic and locally recurrent PCa compared to other PSMA agents that are excreted via urinary tract.

18F-NaF PET/CT has the clinical utility in evaluation of bone metastasis in high-risk PCa patients, who have equivocal or negative findings on 99mTc bone scintigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    PubMed  Google Scholar 

  2. Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular imaging of prostate cancer. Radiographics. 2015;36(1):142–59.

    Article  PubMed  Google Scholar 

  3. Bednarova S, Lindenberg ML, Vinsensia M, Zuiani C, Choyke PL, Turkbey B. Positron emission tomography (PET) in primary prostate cancer staging and risk assessment. Translational Androl Urol. 2017;6(3):413.

    Article  Google Scholar 

  4. Kessler B, Albertsen P. The natural history of prostate cancer. Urol Clin. 2003;30(2):219–26.

    Article  Google Scholar 

  5. Lindenberg L, Choyke P, Dahut W. Prostate cancer imaging with novel PET tracers. Curr Urol Rep. 2016;17(3):18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mazzone E, Preisser F, Nazzani S, Tian Z, Fossati N, Gandaglia G, et al. More extensive lymph node dissection improves survival benefit of radical cystectomy in metastatic urothelial carcinoma of the bladder. Clin Genitourin Cancer. 2019;17(2):105–13.e2. https://doi.org/10.1016/j.clgc.2018.11.003.

  7. Keetch DW, Catalona WJ, Smith DS. Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J Urol. 1994;151(6):1571–4.

    Article  CAS  PubMed  Google Scholar 

  8. Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261(1):46–66.

    Article  PubMed  Google Scholar 

  9. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262(1):26–42.

    Article  PubMed  Google Scholar 

  10. Jadvar H. Molecular imaging of prostate cancer: PET radiotracers. Am J Roentgenol. 2012;199(2):278–91.

    Article  Google Scholar 

  11. Vali R, Loidl W, Pirich C, Langesteger W, Beheshti M. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nabi HA, Zubeldia JM. Clinical applications of 18F-FDG in oncology. J Nucl Med Technol. 2002;30(1):3–9.

    PubMed  Google Scholar 

  13. Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22(11):1637–53.

    Article  CAS  PubMed  Google Scholar 

  14. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.

    Article  CAS  PubMed  Google Scholar 

  15. Schuster DM, Nanni C, Fanti S. Editors. PET tracers beyond FDG in prostate cancer. Semin Nucl Med. 2016;46(6):507–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jadvar H. PET of glucose metabolism and cellular proliferation in prostate cancer. J Nucl Med. 2016;57(Suppl 3):25S–9S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Powles T, Murray I, Brock C, Oliver T, Avril N. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol. 2007;51(6):1511–21.

    Article  PubMed  Google Scholar 

  18. Backhaus B, Müller S, Matthies A, Palmedo H, Jaeger U, Biersack H, et al. Technical limits of PET/CT with 18FDG in prostate cancer. Aktuelle Urol. 2006;37(3):218–21.

    Article  PubMed  Google Scholar 

  19. Jadvar H. Molecular imaging of prostate cancer with 18 F-fluorodeoxyglucose PET. Nat Rev Urol. 2009;6(6):317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salminen E, Hogg A, Binns D, Frydenberg M, Hicks R. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol. 2002;41(5):425–9.

    Article  PubMed  Google Scholar 

  21. Liu IJ, Zafar MB, Lai Y-H, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  22. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  23. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F-or 11C-acetate, and 18F-or 11C-choline. J Nucl Med. 2011;52(1):81–9.

    Article  PubMed  Google Scholar 

  24. Meirelles GS, Schöder H, Ravizzini GC, Gönen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16(24):6093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jadvar H, Desai B, Ji L, Conti PS, Dorff TB, Groshen SG, et al. Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med. 2013;54(8):1195–201.

    Article  CAS  PubMed  Google Scholar 

  26. Beauregard J-M, Blouin A-C, Fradet V, Caron A, Fradet Y, Lemay C, et al. FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging. 2015;15(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jadvar H. Imaging evaluation of prostate cancer with 18 F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40(1):5–10.

    Article  CAS  PubMed Central  Google Scholar 

  28. Minamimoto R, Uemura H, Sano F, Terao H, Nagashima Y, Yamanaka S, et al. The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med. 2011;25(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y. Diagnostic role of fluorodeoxyglucose positron emission tomography-computed tomography in prostate cancer. Oncol Lett. 2014;7(6):2013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minamimoto R, Senda M, Jinnouchi S, Terauchi T, Yoshida T, Murano T, et al. The current status of an FDG-PET cancer screening program in Japan, based on a 4-year (2006–2009) nationwide survey. Ann Nucl Med. 2013;27(1):46–57.

    Article  PubMed  Google Scholar 

  31. Bertagna F, Sadeghi R, Giovanella L, Treglia G. Incidental uptake of 18F-fluorodeoxyglucose in the prostate gland. Nuklearmedizin. 2014;53(06):249–58.

    Article  CAS  PubMed  Google Scholar 

  32. Kang PM, Seo WI, Lee SS, Bae SK, Kwak HS, Min K, et al. Incidental abnormal FDG uptake in the prostate on 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography scans. Asian Pac J Cancer Prev. 2014;15(20):8699–703.

    Article  PubMed  Google Scholar 

  33. Reesink DJ, van de Putte EE F, Vegt E, De Jong J, van Werkhoven E, Mertens LS, et al. Clinical relevance of incidental prostatic lesions on fdg-positron emission tomography/computerized tomography—should patients receive further evaluation? J Urol. 2016;195(4 Part 1):907–12.

    Article  PubMed  Google Scholar 

  34. Sahin E, Elboga U, Kalender E, Basıbuyuk M, Demir HD, Celen YZ. Clinical significance of incidental FDG uptake in the prostate gland detected by PET/CT. Int J Clin Exp Med. 2015;8(7):10577–85. eCollection 2015

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown AM, Lindenberg ML, Sankineni S, Shih JH, Johnson LM, Pruthy S, et al. Does focal incidental 18 F-FDG PET/CT uptake in the prostate have significance? Abdom Imaging. 2015;40(8):3222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kwon T, Jeong IG, You D, Hong JH, Ahn H, Kim C-S. Prevalence and clinical significance of incidental 18F-fluoro-2-deoxyglucose uptake in prostate. Korean J Urol. 2015;56(4):288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schöder H, Herrmann K, Gönen M, Hricak H, Eberhard S, Scardino P, et al. 2-[18F] fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11(13):4761–9.

    Article  PubMed  Google Scholar 

  38. Chang C-H, Wu H-C, Tsai JJ, Shen Y-Y, Changlai S-P, Kao A. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int. 2003;70(4):311–5.

    Article  PubMed  Google Scholar 

  39. Richter JA, Rodríguez M, Rioja J, Peñuelas I, Martí-Climent J, Garrastachu P, et al. Dual tracer 11 C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol Imaging Biol. 2010;12(2):210–7.

    Article  PubMed  Google Scholar 

  40. Öztürk H, Karapolat İ. 18F-fluorodeoxyglucose PET/CT for detection of disease in patients with prostate-specific antigen relapse following radical treatment of a local-stage prostate cancer. Oncol Lett. 2016;11(1):316–22.

    Article  PubMed  CAS  Google Scholar 

  41. Jadvar H, Desai B, Ji L, Conti PS, Dorff TB, Groshen SG, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med. 2012;37(7):637.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Madigan AA, Rycyna KJ, Parwani AV, Datiri YJ, Basudan AM, Sobek KM, et al. Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am J Pathol. 2014;184(8):2156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mertan FV, Lindenberg L, Choyke PL, Turkbey B. PET imaging of recurrent and metastatic prostate cancer with novel tracers. Future Oncol. 2016;12(21):2463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seltzer MA, Jahan SA, Sparks R, Stout DB, Satyamurthy N, Dahlbom M, et al. Radiation dose estimates in humans for 11C-acetate whole-body PET. J Nucl Mee. 2004;45(7):1233–6.

    CAS  Google Scholar 

  45. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53(4):538–45.

    Article  CAS  PubMed  Google Scholar 

  46. Jambor I, Borra R, Kemppainen J, Lepomäki V, Parkkola R, Dean K, et al. Improved detection of localized prostate cancer using co-registered MRI and 11C-acetate PET/CT. Eur J Radiol. 2012;81(11):2966–72.

    Article  PubMed  Google Scholar 

  47. Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GRM, Reza DKV, et al. Application of 11C-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112(8):1062–72.

    Article  CAS  PubMed  Google Scholar 

  48. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43(2):181–6.

    CAS  PubMed  Google Scholar 

  49. Liu J, Chen Z, Wang T, Liu L, Zhao L, Guo G, et al. Influence of four radiotracers in PET/CT on diagnostic accuracy for prostate cancer: a bivariate random-effects meta-analysis. Cell Physiol Biochem. 2016;39(2):467–80.

    Article  CAS  PubMed  Google Scholar 

  50. Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med. 2013;54(5):699–706.

    Article  CAS  PubMed  Google Scholar 

  51. Schumacher MC, Radecka E, Hellström M, Jacobsson H, Sundin A. [11C] Acetate positron emission tomography-computed tomography imaging of prostate cancer lymph-node metastases correlated with histopathological findings after extended lymphadenectomy. Scandinavian J Urol. 2015;49(1):35–42.

    Article  CAS  Google Scholar 

  52. Leisser A, Pruscha K, Ubl P, Wadsak W, Mayerhöfer M, Mitterhauser M, et al. Evaluation of fatty acid synthase in prostate cancer recurrence: SUV of [11C] acetate PET as a prognostic marker. Prostate. 2015;75(15):1760–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dusing RW, Peng W, Lai S-M, Grado GL, Holzbeierlein JM, Thrasher JB, et al. Prostate-specific antigen and prostate-specific antigen velocity as threshold indicators in 11C-acetate PET/CTAC scanning for prostate cancer recurrence. Clin Nucl Med. 2014;39(9):777.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Almeida FD, Yen C-K, Scholz MC, Lam RY, Turner J, Bans LL, et al. Performance characteristics and relationship of PSA value/kinetics on carbon-11 acetate PET/CT imaging in biochemical relapse of prostate cancer. Am J Nucl Med Mol Imaging. 2017;7(1):1.

    PubMed  PubMed Central  Google Scholar 

  55. Regula N, Häggman M, Johansson S, Sörensen J. Malignant lipogenesis defined by 11 C-acetate PET/CT predicts prostate cancer-specific survival in patients with biochemical relapse after prostatectomy. Eur J Nucl Med Mol Imaging. 2016;43(12):2131–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61(9):3599–603.

    CAS  PubMed  Google Scholar 

  57. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37(5):1512–36.

    Article  PubMed  Google Scholar 

  58. Krause BJ, Souvatzoglou M, Treiber U, editors. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urolog Oncol Sem Orig Investig. 2013;31(4):427–35.

    Google Scholar 

  59. Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Treiber U, et al. Tumour volume delineation in prostate cancer assessed by [11 C] choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging. 2013;40(6):824–31.

    Article  PubMed  Google Scholar 

  60. Grosu A-L, Weirich G, Wendl C, Prokic V, Kirste S, Geinitz H, et al. 11 C-Choline PET/pathology image coregistration in primary localized prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(12):2242–8.

    Article  CAS  PubMed  Google Scholar 

  61. Pinaquy JB, De Clermont-Galleran H, Pasticier G, Rigou G, Alberti N, Hindie E, et al. Comparative effectiveness of [18F]-fluorocholine PET-CT and pelvic MRI with diffusion-weighted imaging for staging in patients with high-risk prostate cancer. Prostate. 2015;75(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  62. Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate-to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.

    Article  PubMed  Google Scholar 

  63. von Eyben FE, Kairemo K. Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Comms. 2014;35(3):221–30.

    Article  CAS  Google Scholar 

  64. Evangelista L, Cimitan M, Zattoni F, Guttilla A, Zattoni F, Saladini G. Comparison between conventional imaging (abdominal–pelvic computed tomography and bone scan) and [18F] choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- to high-risk prostate cancer: a retrospective analysis. Scandinavian J Urol. 2015;49(5):345–53.

    Article  CAS  Google Scholar 

  65. Van den Bergh L, Lerut E, Haustermans K, Deroose CM, Oyen R, Isebaert S, et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol Sem Orig Investig. 2015:33(3):109.e23–109.e31.

    Google Scholar 

  66. Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70(1):161–75.

    Article  PubMed  Google Scholar 

  67. Cimitan M, Evangelista L, Hodolič M, Mariani G, Baseric T, Bodanza V, et al. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1,000 patients. J Nucl Med. 2015;56(2):209–15.

    Article  PubMed  CAS  Google Scholar 

  68. García J, Cozar M, Soler M, Bassa P, Riera E, Ferrer J. Salvage radiotherapy in prostate cancer patients. Planning, treatment response and prognosis using 11C-choline PET/CT. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2016;35(4):238–45.

    Article  Google Scholar 

  69. Goldstein J, Even-Sapir E, Ben-Haim S, Saad A, Spieler B, Davidson T, et al. Does choline PET/CT change the management of prostate cancer patients with biochemical failure? Am J Clin Oncol. 2017;40(3):256–9.

    Article  CAS  PubMed  Google Scholar 

  70. Incerti E, Fodor A, Mapelli P, Fiorino C, Alongi P, Kirienko M, et al. Radiation treatment of lymph node recurrence from prostate cancer: is 11C-choline PET/CT predictive of survival outcomes? J Nucl Med. 2015;56(12):1836–42.

    Article  CAS  PubMed  Google Scholar 

  71. Picchio M, Giovacchini G, Gianolli L, Suardi N, Abdollah F, Gandaglia G, et al. 930 [11C]Choline PET/CT predicts survival in hormone-naïve prostate cancer patients with biochemical failure after radical prostatectomy. Eur Urol Suppl. 2015;14(2):e930.

    Article  Google Scholar 

  72. Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer–specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med. 2014;55(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  73. Leiblich A, Stevens D, Sooriakumaran P. The utility of molecular imaging in prostate cancer. Curr Urol Rep. 2016;17(3):26.

    Article  PubMed  PubMed Central  Google Scholar 

  74. FDA Approves 11C-Choline for PET in Prostate Cancer. J Nucl Med. 2012;53(12):11N. PubMed PMID: 23203247.

    Google Scholar 

  75. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48(1):46–55.

    CAS  PubMed  Google Scholar 

  76. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F] FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58(6):657–66.

    Article  CAS  PubMed  Google Scholar 

  77. Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, et al. Characterization of primary prostate carcinoma by anti-1-amino-2-[18F]-fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake. Am J Nucl Med Mol Imaging. 2013;3(1):85.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 2013;270(3):849–56.

    Article  PubMed  Google Scholar 

  79. Jambor I, Kuisma A, Kähkönen E, Kemppainen J, Merisaari H, Eskola O, et al. Prospective evaluation of 18 F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate-to high-risk prostate cancer patients (FLUCIPRO trial). Eur J Nucl Med Mol Imaging. 2018;45(3):355–64.

    Article  PubMed  Google Scholar 

  80. Kairemo K, Rasulova N, Partanen K, Joensuu T. Preliminary clinical experience of trans-1-Amino-3-(18) F-fluorocyclobutanecarboxylic Acid (anti-(18) F-FACBC) PET/CT imaging in prostate cancer patients. Biomed Res Int. 2014;2014:1.

    Article  CAS  Google Scholar 

  81. Suzuki H, Inoue Y, Fujimoto H, Yonese J, Tanabe K, Fukasawa S, et al. Diagnostic performance and safety of NMK36 (trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid)-PET/CT in primary prostate cancer: multicenter phase IIb clinical trial. Japanese J Clin Oncol. 2016;46(2):152–62.

    Article  Google Scholar 

  82. Parent EE, Schuster DM. Update on 18F-Fluciclovine PET for prostate cancer imaging. J Nucl Med. 2018;59(5):733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine (18F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol. 2017;197(3 Part 1):676–83.

    Article  PubMed  Google Scholar 

  84. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et al. Recurrent prostate cancer detection with anti-3-[18 F] FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43(10):1773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18 F-FACBC (anti1-amino-3-18 F-fluorocyclobutane-1-carboxylic acid) versus 11 C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601–10.

    Article  CAS  PubMed  Google Scholar 

  86. Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[18F] FACBC positron emission tomography-computerized tomography and 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014;191(5):1446–53.

    Article  PubMed  Google Scholar 

  87. Ren J, Yuan L, Wen G, Yang J. The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol. 2016;57(4):487–93.

    Article  PubMed  Google Scholar 

  88. Wright GL Jr, Haley C, Beckett ML, Schellhammer PF, editors. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol Sem Orig Investig. 1995;1(1):18–28.

    Google Scholar 

  89. Czarniecki M, Mena E, Lindenberg L, Cacko M, Harmon S, Radtke JP, et al. Keeping up with the prostate-specific membrane antigens (PSMAs): an introduction to a new class of positron emission tomography (PET) imaging agents. Translational Androl Urol. 2018;7(5):831.

    Article  Google Scholar 

  90. Demirci E, Sahin OE, Ocak M, Akovali B, Nematyazar J, Kabasakal L. Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging. Nucl Med Comms. 2016;37(11):1169–79.

    Article  CAS  Google Scholar 

  91. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52(4):637–40.

    Article  CAS  PubMed  Google Scholar 

  92. Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci. 2005;102(17):5981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taneja SS. ProstaScint® scan: contemporary use in clinical practice. Rev Urol. 2004;6(Suppl 10):S19.

    PubMed  PubMed Central  Google Scholar 

  94. Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23(4):688–97.

    Article  CAS  PubMed  Google Scholar 

  95. Rauscher I, Maurer T, Fendler WP, Sommer WH, Schwaiger M, Eiber M. 68 Ga-PSMA ligand PET/CT in patients with prostate cancer: how we review and report. Cancer Imaging. 2016;16(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart H, Hadaschik B, et al. PET imaging with a [68 Ga] gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95.

    Article  CAS  PubMed  Google Scholar 

  97. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70(5):829–36.

    Article  CAS  PubMed  Google Scholar 

  98. Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. 2016;70(4):553–7.

    Article  CAS  PubMed  Google Scholar 

  99. Budäus L, Leyh-Bannurah S-R, Salomon G, Michl U, Heinzer H, Huland H, et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69(3):393–6.

    Article  PubMed  Google Scholar 

  100. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the 68 Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.

    Article  CAS  PubMed  Google Scholar 

  101. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):926–37.

    Article  PubMed  Google Scholar 

  102. Verburg FA, Pfister D, Heidenreich A, Vogg A, Drude NI, Vöö S, et al. Extent of disease in recurrent prostate cancer determined by [68 Ga] PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging. 2016;43(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  103. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74.

    Article  PubMed  Google Scholar 

  104. Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68 Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44(8):1258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56(8):1185–90.

    Article  CAS  PubMed  Google Scholar 

  106. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate Cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5(6):856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gorin MA, Pomper MG, Rowe SP. PSMA-targeted imaging of prostate cancer: the best is yet to come. BJU Int. 2016;117(5):715–6.

    Article  PubMed  Google Scholar 

  108. Sanchez-Crespo A. Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot. 2013;76:55–62.

    Article  CAS  PubMed  Google Scholar 

  109. Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, et al. Comparison of [18 F] DCFPyL and [68 Ga] Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17(4):575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [18 F] DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56(7):1003–10.

    Article  CAS  PubMed  Google Scholar 

  112. Turkbey B, Mena E, Lindenberg L, Adler S, Bednarova S, Berman R, et al. 18F-DCFBC prostate-specific membrane antigen-targeted PET/CT imaging in localized prostate Cancer: correlation with multiparametric MRI and histopathology. Clin Nucl Med. 2017;42(10):735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rowe SP, Macura KJ, Ciarallo A, Mena E, Blackford A, Nadal R, et al. Comparison of prostate-specific membrane antigen–based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med. 2016;57(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  114. Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, et al. PSMA-based [18 F] DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol. 2016;18(3):411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rowe SP, Mana-Ay M, Javadi MS, Szabo Z, Leal JP, Pomper MG, et al. PSMA-based detection of prostate cancer bone lesions with 18F-DCFPyL PET/CT: a sensitive alternative to 99mTc-MDP bone scan and Na18F PET/CT? Clin Genitourin Cancer. 2016;14(1):e115–e8.

    Article  PubMed  Google Scholar 

  116. Gorin MA, Rowe SP, Patel HD, Vidal I, Mana-Ay M, Javadi MS, et al. Prostate specific membrane antigen targeted 18F-DCFPyL positron emission tomography/computerized tomography for the preoperative staging of high risk prostate cancer: results of a prospective, phase II, single center study. J Urol. 2018;199(1):126–32.

    Article  PubMed  Google Scholar 

  117. Mena E, Lindenberg ML, Shih JH, Adler S, Harmon S, Bergvall E, et al. Clinical impact of PSMA-based 18 F–DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur J Nucl Med Mol Imaging. 2018;45(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  118. Giesel FL, Cardinale J, Schäfer M, Neels O, Benešová M, Mier W, et al. 18 F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J Nucl Med Mol Imaging. 2016;43(10):1929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44(4):678–88.

    Article  CAS  PubMed  Google Scholar 

  120. Kesch C, Vinsensia M, Radtke JP, Schlemmer HP, Heller M, Ellert E, et al. Intraindividual comparison of 18F-PSMA-1007 PET/CT, multiparametric MRI, and radical prostatectomy Specimens in patients with primary prostate cancer: a retrospective, proof-of-concept study. J Nucl Med. 2017;58(11):1805–10.

    Article  CAS  PubMed  Google Scholar 

  121. Paddubny K, Freitag MT, Kratochwil C, Koerber S, Radtke JP, Sakovich R, et al. Fluorine-18 prostate-specific membrane antigen-1007 positron emission tomography/computed tomography and multiparametric magnetic resonance imaging in diagnostics of local recurrence in a prostate cancer patient after recent radical prostatectomy. Clin Genitourin Cancer. 2018;16(2):103–5.

    Article  PubMed  Google Scholar 

  122. Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate. 2014;74(2):210–6.

    Article  PubMed  Google Scholar 

  123. Langsteger W, Rezaee A, Pirich C, Beheshti M, editors. 18F-NaF-PET/CT and 99mTc-MDP bone scintigraphy in the detection of bone metastases in prostate cancer. Semin Nucl Med. 2016;46(6):491–501.

    Google Scholar 

  124. Fraum TJ, Ludwig DR, Kim EH, Schroeder P, Hope TA, Ippolito JE. Prostate cancer PET tracers: essentials for the urologist. Can J Urol. 2018;25:9371–83.

    PubMed  Google Scholar 

  125. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20.

    Article  PubMed  Google Scholar 

  126. Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.

    Article  PubMed  Google Scholar 

  127. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single-and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  128. Langsteger W, Balogova S, Huchet V, Beheshti M, Paycha F, Egrot C, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55(4):448–57.

    CAS  PubMed  Google Scholar 

  129. Apolo AB, Lindenberg L, Shih JH, Mena E, Kim JW, Park JC, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57(6):886–92.

    Article  CAS  PubMed  Google Scholar 

  130. Edler von Eyben F, Kairemo K, Kiljunen T, Joensuu T. Planning of external beam radiotherapy for prostate cancer guided by PET/CT. Curr Radiopharm. 2015;8(1):19–31.

    Article  CAS  Google Scholar 

  131. Poulsen MH, Petersen H, Høilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy,[18 F] choline positron emission tomography (PET)/computed tomography (CT) and [18 F] NaF PET/CT. BJU Int. 2014;114(6):818–23.

    Article  CAS  PubMed  Google Scholar 

  132. Muzahir S, Jeraj R, Liu G, Hall LT, Del Rio AM, Perk T, et al. Differentiation of metastatic vs degenerative joint disease using semi-quantitative analysis with 18F-NaF PET/CT in castrate resistant prostate cancer patients. Am J Nucl Med Mol Imaging. 2015;5(2):162.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Turkbey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikpanah, M., Mena, E., Choyke, P.L., Turkbey, B. (2020). Molecular Imaging of Prostate Cancer. In: Tirkes, T. (eds) Prostate MRI Essentials. Springer, Cham. https://doi.org/10.1007/978-3-030-45935-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45935-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45934-5

  • Online ISBN: 978-3-030-45935-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics