Skip to main content

Role of Polycyclic Aromatic Hydrocarbons as EDCs in Metabolic Disorders

  • Chapter
  • First Online:
Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are universal toxic chemicals produced mainly due to improper combustion of organic substances like wood, coal, petrol, oil, etc. Release of these pollutants into the environment is because of various activities including open air burning, natural losses, leakage of various chemicals, accidental fire, and many more. The most common sources of PAH production are household heating systems, plants using coal for gasification and liquefaction, various industries and factories manufacturing different livelihood products, petroleum refineries, and automobile exhaust. In the environment, PAHs exist in gaseous-phase and sorbet to aerosols. The movement of PAH from atmosphere to humans is strongly dependent on its phase in the air and the route of entry to human body. Soil and water are the main sources of PAHs deposition in the ecosystem. Many PAHs act as endocrine-disrupting chemicals (EDCs) having a strong blow on the regulation of endocrine dependent functions including metabolism, growth, reproduction, immune system, and may also have toxic and carcinogenic properties. After exposure, PAHs enter into the human body through different routes, get absorbed, and metabolized via cytochrome P450 oxidation system. PAHs are obesogens causing dysregulation of hormonal network controlling appetite and endocrine tissues which changes insulin sensitivity and lipid metabolism. The time of obesogens exposure (prenatal, postnatal, early childhood, and young) possesses different consequences on the entire life span of an individual. Different assays are used to check PAHs both qualitatively and quantitatively in various samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek N, Soto A, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology. 2012;153(9):4097–110.

    Article  CAS  Google Scholar 

  2. Golub MS, Doherty JD. Triphenyltin as a potential human endocrine disruptor. J Toxicol Environ Health B. 2004;7(4):281–95.

    Article  CAS  Google Scholar 

  3. Mazur CS, Marchitti SA, Zastre J. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: implications for pesticide–drug interactions. Toxicol Lett. 2015;232(1):37–45.

    Article  CAS  Google Scholar 

  4. Mumtaz M, George J, Gold K, Cibulas W, Derosa C. ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol Ind Health. 1996;12(6):742–971.

    Article  CAS  Google Scholar 

  5. Marston CP, Pereira C, Ferguson J, Fischer K, Hedstrom O, Dashwood W-M, et al. Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH–DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis. 2001;22(7):1077–86.

    Article  CAS  Google Scholar 

  6. Baek S, Field R, Goldstone M, Kirk P, Lester J, Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut. 1991;60(3–4):279–300.

    Article  CAS  Google Scholar 

  7. Buehler SS, Hites RA. Peer reviewed: the great lakes’ integrated atmospheric deposition network. Washington: ACS Publications; 2002.

    Google Scholar 

  8. Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol. 2004;23(5):301–33.

    Article  CAS  Google Scholar 

  9. Keith L, Telliard W. ES&T special report: priority pollutants: I—a perspective view. Environ Sci Technol. 1979;13(4):416–23.

    Article  Google Scholar 

  10. Denissenko MF, Pao A, Tang M-s, Pfeifer GP. Preferential formation of benzo [a] pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–2.

    Article  CAS  Google Scholar 

  11. Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110(suppl 3):451–88.

    Article  Google Scholar 

  12. Zhang Y, Ding J, Shen G, Zhong J, Wang C, Wei S, et al. Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites–a controlled case study in Beijing, China. Environ Pollut. 2014;184:515–22.

    Article  CAS  Google Scholar 

  13. Rubin H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis. 2001;22(12):1903–30.

    Article  CAS  Google Scholar 

  14. Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol. 2013;47(12):6415–24.

    Article  Google Scholar 

  15. Li W, Wang C, Wang H, Chen J, Shen H, Shen G, et al. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China. Environ Pollut. 2014;192:83–90.

    Article  CAS  Google Scholar 

  16. McVeety BD, Hites RA. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmos Environ. 1988;22(3):511–36.

    Article  CAS  Google Scholar 

  17. Nam JJ, Sweetman AJ, Jones KC. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J Environ Monit. 2009;11(1):45–8.

    Article  CAS  Google Scholar 

  18. Nam JJ, Thomas GO, Jaward FM, Steinnes E, Gustafsson O, Jones KC. PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere. 2008;70(9):1596–602.

    Article  CAS  Google Scholar 

  19. Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol. 1993;4(3):331–8.

    Article  CAS  Google Scholar 

  20. Buratti M, Campo L, Fustinoni S, Cirla P, Martinotti I, Cavallo D, et al. Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons as biomarkers of exposure in asphalt workers. Biomarkers. 2007;12(3):221–39.

    Article  CAS  Google Scholar 

  21. Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol. 2013;9(11):1465–80.

    Article  CAS  Google Scholar 

  22. McClean MD, Rinehart R, Sapkota A, Cavallari J, Herrick R. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers. J Occup Environ Hyg. 2007;4(S1):118–26.

    Article  CAS  Google Scholar 

  23. Pampanin DM, Larssen E, Øysæd KB, Sundt RC, Sydnes MO. Study of the bile proteome of Atlantic cod (Gadus morhua): multi-biological markers of exposure to polycyclic aromatic hydrocarbons. Mar Environ Res. 2014;101:161–8.

    Article  CAS  Google Scholar 

  24. Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8(3):444–72.

    Article  CAS  Google Scholar 

  25. Tollefsen K, Sundt R, Beyer J, Meier S, Hylland K. Endocrine modulation in Atlantic cod (Gadus morhua L.) exposed to alkylphenols, polyaromatic hydrocarbons, produced water, and dispersed oil. J Toxic Environ Health A. 2011;74(7–9):529–42.

    Article  CAS  Google Scholar 

  26. Wagner M, Bolm-Audorff U, Hegewald J, Fishta A, Schlattmann P, Schmitt J, et al. Occupational polycyclic aromatic hydrocarbon exposure and risk of larynx cancer: a systematic review and meta-analysis. Occup Environ Med. 2015;72(3):226–33.

    Article  Google Scholar 

  27. Koganti A, Singh R, Ma B-L, Weyand EH. Comparative analysis of PAH: DNA adducts formed in lung of mice exposed to neat coal tar and soils contaminated with coal tar. Environ Sci Technol. 2001;35(13):2704–9.

    Article  CAS  Google Scholar 

  28. Stegeman JJ, Lech JJ. Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect. 1991;90:101–9.

    CAS  Google Scholar 

  29. Grimmer G, Brune H, Dettbarn G, Naujack K-W, Mohr U, Wenzel-Hartung R. Contribution of polycyclic aromatic compounds to the carcinogenicity of sidestream smoke of cigarettes evaluated by implantation into the lungs of rats. Cancer Lett. 1988;43(3):173–7.

    Article  CAS  Google Scholar 

  30. Piccardo MT, Stella A, Valerio F. Is the smokers exposure to environmental tobacco smoke negligible? Environ Health. 2010;9(1):5.

    Article  Google Scholar 

  31. Hansen ÅM, Olsen ILB, Poulsen OM. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses. Sci Total Environ. 1992;126(1–2):17–26.

    Article  CAS  Google Scholar 

  32. Mottier P, Parisod V, Turesky RJ. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. J Agric Food Chem. 2000;48(4):1160–6.

    Article  CAS  Google Scholar 

  33. Šimko P. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. J Chromatogr B. 2002;770(1–2):3–18.

    Article  Google Scholar 

  34. Billiard SM, Hahn ME, Franks DG, Peterson RE, Bols NC, Hodson PV. Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comp Biochem Physiol B Biochem Mol Biol. 2002;133(1):55–68.

    Article  Google Scholar 

  35. Barron MG, Heintz R, Rice SD. Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar Environ Res. 2004;58(2–5):95–100.

    Article  CAS  Google Scholar 

  36. Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and1B1. Cancer Sci. 2004;95(1):1–6.

    Article  CAS  Google Scholar 

  37. Kummer V, Mašková J, Zralý Z, Faldyna M. Ovarian disorders in immature rats after postnatal exposure to environmental polycyclic aromatic hydrocarbons. J Appl Toxicol. 2013;33(2):90–9.

    Article  Google Scholar 

  38. Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–24.

    Article  CAS  Google Scholar 

  39. Yin S, Tang M, Chen F, Li T, Liu W. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): the correlation with and impact on reproductive hormones in umbilical cord serum. Environ Pollut. 2017;220:1429–37.

    Article  CAS  Google Scholar 

  40. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015;145(1):5–15.

    Article  CAS  Google Scholar 

  41. Chavan H, Krishnamurthy P. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem. 2012;287(38):32054–68.

    Article  CAS  Google Scholar 

  42. Dragin N, Shi Z, Madan R, Karp CL, Sartor MA, Chen C, et al. Phenotype of the Cyp1a1/1a2/1b1 (-/-) triple-knockout mouse. Mol Pharmacol. 2008;73(6):1844–56.

    Article  CAS  Google Scholar 

  43. Jiang W, Wang L, Zhang W, Coffee R, Fazili IS, Moorthy B. Persistent induction of cytochrome P450 (CYP) 1A enzymes by 3-methylcholanthrene in vivo in mice is mediated by sustained transcriptional activation of the corresponding promoters. Biochem Biophys Res Commun. 2009;390(4):1419–24.

    Article  CAS  Google Scholar 

  44. Jiang W, Wang L, Kondraganti SR, Fazili IS, Couroucli XI, Felix EA, et al. Disruption of the gene for CYP1A2, which is expressed primarily in liver, leads to differential regulation of hepatic and pulmonary mouse CYP1A1 expression and augmented human CYP1A1 transcriptional activation in response to 3-methylcholanthrene in vivo. J Pharmacol Exp Ther. 2010;335(2):369–79.

    Article  CAS  Google Scholar 

  45. Kondraganti SR, Fernandez-Salguero P, Gonzalez FJ, Ramos KS, Jiang W, Moorthy B. Polycyclic aromatic hydrocarbon-inducible DNA adducts: evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activation in vivo. Int J Cancer. 2003;103(1):5–11.

    Article  CAS  Google Scholar 

  46. Shimada T, Inoue K, Suzuki Y, Kawai T, Azuma E, Nakajima T, et al. Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis. 2002;23(7):1199–207.

    Article  CAS  Google Scholar 

  47. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 2007;21(1):70–83.

    Article  Google Scholar 

  48. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279(23):23847–50.

    Article  CAS  Google Scholar 

  49. Ioannides C. Cytochromes P450: role in the metabolism and toxicity of drugs and other xenobiotics. Cambridge: Royal Society of Chemistry; 2008.

    Book  Google Scholar 

  50. Walsh AA, Szklarz GD, Scott EE. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J Biol Chem. 2013;288(18):12932–43.

    Article  CAS  Google Scholar 

  51. Shimada T, Tanaka K, Takenaka S, Murayama N, Martin MV, Foroozesh MK, et al. Structure− function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem Res Toxicol. 2010;23(12):1921–35.

    Article  CAS  Google Scholar 

  52. Shimada T, Oda Y, Gillam EM, Guengerich FP, Inoue K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab Dispos. 2001;29(9):1176–82.

    CAS  Google Scholar 

  53. Choudhary D, Jansson I, Schenkman J, Sarfarazi M, Stoilov I. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys. 2003;414(1):91–100.

    Article  CAS  Google Scholar 

  54. Jiang W, Welty SE, Couroucli XI, Barrios R, Kondraganti SR, Muthiah K, et al. Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. J Pharmacol Exp Ther. 2004;310(2):512–9.

    Article  CAS  Google Scholar 

  55. Fazili IS, Jiang W, Wang L, Felix EA, Khatlani T, Coumoul X, et al. Persistent induction of cytochrome P4501A1 in human hepatoma cells by 3-methylcholanthrene: evidence for sustained transcriptional activation of the CYP1A1 promoter. J Pharmacol Exp Ther. 2010;333(1):99–109.

    Article  CAS  Google Scholar 

  56. Moorthy B. Persistent expression of 3-methylcholanthrene-inducible cytochromes P4501A in rat hepatic and extrahepatic tissues. J Pharmacol Exp Ther. 2000;294(1):313–22.

    CAS  Google Scholar 

  57. Moorthy B, Miller KP, Jiang W, Ramos KS. The atherogen 3-methylcholanthrene induces multiple DNA adducts in mouse aortic smooth muscle cells: role of cytochrome P4501B1. Cardiovasc Res. 2002;53(4):1002–9.

    Article  CAS  Google Scholar 

  58. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metabol. 2004;89(6):2548–56.

    Article  CAS  Google Scholar 

  59. Heindel JJ, Schug TT. The obesogen hypothesis: current status and implications for human health. Curr Environ Health Rep. 2014;1(4):333–40.

    Article  Google Scholar 

  60. Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214(5):559–65.

    Article  CAS  Google Scholar 

  61. Nappi F, Barrea L, Di Somma C, Savanelli M, Muscogiuri G, Orio F, et al. Endocrine aspects of environmental “obesogen” pollutants. Int J Environ Res Public Health. 2016;13(8):765.

    Article  Google Scholar 

  62. Grün F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147(6):s50–s5.

    Article  Google Scholar 

  63. Heindel JJ, Vom Saal FS, Blumberg B, Bovolin P, Calamandrei G, Ceresini G, et al. Parma consensus statement on metabolic disruptors. Environ Health. 2015;14(1):54.

    Article  Google Scholar 

  64. Janesick A, Blumberg B. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today. 2011;93(1):34–50.

    Article  CAS  Google Scholar 

  65. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783.

    Article  CAS  Google Scholar 

  66. Darbre PD. Endocrine disruptors and obesity. Curr Obes Rep. 2017;6(1):18–27.

    Article  Google Scholar 

  67. Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.

    Article  Google Scholar 

  68. Sallis JF, Glanz K. The role of built environments in physical activity, eating, and obesity in childhood. Futur Child. 2006;16(1):89–108.

    Article  Google Scholar 

  69. Sallis JF, Glanz K. Physical activity and food environments: solutions to the obesity epidemic. Milbank Q. 2009;87(1):123–54.

    Article  Google Scholar 

  70. Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, et al. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol. 2012;175(11):1163–72.

    Article  Google Scholar 

  71. Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. Int J Androl. 2008;31(2):201–8.

    Article  CAS  Google Scholar 

  72. Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons. In: Advances in applied microbiology, vol. 30. Cambridge: Elsevier; 1984. p. 31–71.

    Google Scholar 

  73. Mueller JG, Cerniglia CE, Pritchard PH. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Bioremediation principles and applications, Biotechnology Research Series, vol. 6. Cambridge: Cambridge University Press; 1996. p. 125–94.

    Chapter  Google Scholar 

  74. Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107–23.

    Article  Google Scholar 

  75. Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60(2):131–44.

    Article  CAS  Google Scholar 

  76. Schnitz A, Squibb K, Oconnor J. Time-varying conjugation of 7, 12-dimethylbenz [a] anthracene metabolites in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol. 1993;121(1):58–70.

    Article  CAS  Google Scholar 

  77. Milo GE, Casto BC. Events of tumor progression associated with carcinogen treatment of epithelium and fibroblast compared with mutagenic events. In: Transformation of human epithelial cells: molecular and oncogenetic mechanisms. Boca Raton: CRC Press; 1992. p. 261–84.

    Google Scholar 

  78. Veraldi A, Costantini AS, Bolejack V, Miligi L, Vineis P, van Loveren H. Immunotoxic effects of chemicals: a matrix for occupational and environmental epidemiological studies. Am J Ind Med. 2006;49(12):1046–55.

    Article  CAS  Google Scholar 

  79. Oostingh GJ, Schmittner M, Ehart AK, Tischler U, Duschl A. A high-throughput screening method based on stably transformed human cells was used to determine the immunotoxic effects of fluoranthene and other PAHs. Toxicol in Vitro. 2008;22(5):1301–10.

    Article  CAS  Google Scholar 

  80. Alexandrov K, Rojas M, Satarug S. The critical DNA damage by benzo (a) pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett. 2010;198(1):63–8.

    Article  CAS  Google Scholar 

  81. Miller KP, Ramos KS. Impact of cellular metabolism on the biological effects of benzo [a] pyrene and related hydrocarbons. Drug Metab Rev. 2001;33(1):1–35.

    Article  CAS  Google Scholar 

  82. Ramos KS, Moorthy B. Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Metab Rev. 2005;37(4):595–610.

    Article  CAS  Google Scholar 

  83. Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A. Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett. 2006;239(2):157–67.

    Article  CAS  Google Scholar 

  84. Liu Y, Vinje J, Pacifico C, Natile G, Sletten E. Formation of adenine− n3/guanine− n7 cross-link in the reaction of trans-oriented platinum substrates with dinucleotides. J Am Chem Soc. 2002;124(43):12854–62.

    Article  CAS  Google Scholar 

  85. Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, et al. CpG site–specific hypermethylation of p16INK4α in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biomark Prev. 2012;21(1):182–90.

    Article  CAS  Google Scholar 

  86. Berge G, Mollerup S, Øvrebø S, Hewer A, Phillips DH, Eilertsen E, et al. Role of estrogen receptor in regulation of polycyclic aromatic hydrocarbon metabolic activation in lung. Lung Cancer. 2004;45(3):289–97.

    Article  Google Scholar 

  87. Käfferlein HU, Marczynski B, Mensing T, Brüning T. Albumin and hemoglobin adducts of benzo [a] pyrene in humans—analytical methods, exposure assessment, and recommendations for future directions. Crit Rev Toxicol. 2010;40(2):126–50.

    Article  Google Scholar 

  88. Kwack SJ, Mu LB. Correlation between DNA or protein adducts and benzo [a] pyrene diol epoxide I–triglyceride adduct detected in vitro and in vivo. Carcinogenesis. 2000;21(4):629–32.

    Article  CAS  Google Scholar 

  89. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutation research/environmental mutagenesis and related subjects, Amsterdam:Elsevier. 1983;113(3–4):173–215

    Google Scholar 

  90. Olajire AA, Altenburger R, Küster E, Brack W. Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon—contaminated sediments of the Niger Delta, Southern Nigeria. Sci Total Environ. 2005;340(1–3):123–36.

    Article  CAS  Google Scholar 

  91. Matson CW, Gillespie AM, McCarthy C, McDonald TJ, Bickham JW, Sullivan R, et al. Wildlife toxicology: biomarkers of genotoxic exposures at a hazardous waste site. Ecotoxicology. 2009;18(7):886–98.

    Article  CAS  Google Scholar 

  92. Harman C, Farmen E, Tollefsen KE. Monitoring North Sea oil production discharges using passive sampling devices coupled with in vitro bioassay techniques. J Environ Monit. 2010;12(9):1699–708.

    Article  CAS  Google Scholar 

  93. Mackay D, Shiu WY. Aqueous solubility of polynuclear aromatic hydrocarbons. J Chem Eng Data. 1977;22(4):399–402.

    Article  CAS  Google Scholar 

  94. Howard P, Meylan W, Aronson D, Stiteler W, Tunkel J, Comber M, et al. A new biodegradation prediction model specific to petroleum hydrocarbons. Environ Toxicol Chem Int J. 2005;24(8):1847–60.

    Article  CAS  Google Scholar 

  95. Comber M, Den Haan K, Djemel N, Eadsforth C., King D. Paumen ML, et al. Primary biodegradation of petroleum hydrocarbons in seawater. Concawe report 10/12; 2012.

    Google Scholar 

Download references

Conflict of Interest

All the authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Ahsan, A., Farooq, M.A., Naveed, M., Li, H. (2021). Role of Polycyclic Aromatic Hydrocarbons as EDCs in Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_19

Download citation

Publish with us

Policies and ethics