Skip to main content

A Novel Approach to Multiscale MD/FE Simulations of Frictional Contacts

  • 177 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1199)

Abstract

In most applications, frictional contacts lead to a noticeable amount of wear, which influences the further frictional behavior. Thus, friction and wear have to be analyzed as a whole to gain powerful models. In such models the interactions of macroscopic and microscopic aspects have to be taken into account. Finite element (FE) simulations are the standard method to simulate macroscopic solid body mechanics. However, they are not suitable to represent microscopic behavior of bodies, especially abrasive friction depending on the roughness of the contact. In these applications, molecular dynamics (MD) simulations using explicit time integration schemes are a much better tool. The combination of both methods is an established approach for the solution of friction problems, which has been pursued by several authors. The usual way of linking both methods is to use MD domains for the boundary of contacting bodies modeled in FE instead of conventional contact elements. The interface between FE and MD domain is generally implemented by defining MD particles and FE nodes as coincident. With this approach, every time step of the MD simulation requires solving a linear equation system for the whole FE modeled solid. The computational cost of solving a sparse linear equation system is superlinearly dependent on its degrees of freedom. Furthermore, MD simulations use explicit time integration, which requires very small time steps to assure stability. Thus, it is disadvantageous to apply the current coupling method to large geometries, since large linear equation systems would have to be solved very often. In consequence, a different approach is required to apply multiscale MD/FE methods to complex geometries.

This paper introduces a novel approach to integrate multiscale capabilities into FE that allows solving large models at reasonable computational cost. The proposed approach integrates MD coupling into FE contact elements characterized by a nonlinear, history dependent friction law, which is trained with MD simulations. The roughness profile of sliding surfaces is modeled with elasto-plastic spherical caps serving as a mesoscopic level. The Hertzian contact between two spherical caps is handled at the microscopic level using an improved variant of the conventional node particle coincidence technique.

Keywords

  • Multiscale simulation
  • Finite elements
  • Molecular dynamics simulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45718-1_10
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-45718-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phy. Rev. E 74, 046710 (2006)

    CrossRef  Google Scholar 

  2. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607 (1995)

    CrossRef  Google Scholar 

  3. Kim, H.J., Kim, D.E.: Nano-scale friction: a review. Int. J. Precis. Eng. Manuf. 10, 141–151 (2009). https://doi.org/10.1007/s12541-009-0039-7

    CrossRef  Google Scholar 

  4. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929 (2005)

    CrossRef  Google Scholar 

  5. Luan, B., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36, 1–16 (2009). https://doi.org/10.1007/s11249-009-9453-3

    CrossRef  Google Scholar 

  6. Solhjoo, S., Vakis, A.I.: Continuum mechanics at the atomic scale: Insights into non-adhesive contacts using molecular dynamics simulations. J. Appl. Phys. 120, 215102 (2016)

    CrossRef  Google Scholar 

  7. Siu, S.W.I., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8(4), 1459–1470 (2012)

    CrossRef  Google Scholar 

  8. Ewen, J.P., Gattinoni, C., Thakkar, F.M., Morgan, N., Spikes, H., Dini, D.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8), 651 (2016)

    CrossRef  Google Scholar 

  9. Cha, P., Srolovitz, D.J., Vanderlick, T.K.: Molecular dynamics simulation of single asperity contact. Acta Mater. 52, 3983–3996 (2004)

    CrossRef  Google Scholar 

  10. Jeng, Y., Su, C., Lay, Y.: An investigation of nanoscale tribological characteristics under different interaction forces. Appl. Surf. Sci. 253, 6754–6761 (2007)

    CrossRef  Google Scholar 

  11. Yang, J., Komvopoulos, K.: A molecular dynamics analysis of surface interference and tip shape and size effects on atomic-scale friction. J. Tribol. 127, 513–521 (2001)

    CrossRef  Google Scholar 

  12. Tran, A.S., Fang, T.H., Tsai, L.R., Chen, C.H.: Friction and scratch characteristics of textured and rough surfaces using the quasi-continuum method. J. Phys. Chem. Solids 126, 180–188 (2019)

    CrossRef  Google Scholar 

  13. Gunkelmann, N., Alhafez, I.A., Steinberger, D., Urbassek, H.M., Sandfeld, S.: Nanoscratching of iron: a novel approach to characterize dislocation microstructures. Comput. Mater. Sci. 135, 181 (2017)

    CrossRef  Google Scholar 

  14. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987)

    CrossRef  Google Scholar 

  15. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79 (2006)

    CrossRef  Google Scholar 

  16. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13, 619–642 (2001)

    CrossRef  Google Scholar 

  17. Blau, P.J.: Scale effects in steady-state friction. Tribol. Trans. 34(3), 335–342 (1991)

    MathSciNet  CrossRef  Google Scholar 

  18. Ramisetti, S.B., Anciaux, G., Molinari, J.-F.: MD/FE multiscale modeling of contact. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear on the Nanoscale. NT, pp. 289–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10560-4_14

    CrossRef  Google Scholar 

  19. Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Phil. Mag. A 73, 1529 (1996)

    CrossRef  Google Scholar 

  20. Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 17–20 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    MathSciNet  CrossRef  Google Scholar 

  22. Sun, X., Cheng, K.: Multi-scale simulation of the nano-metric cutting process. Int. J. Adv. Manuf. Technol. 47, 891–901 (2010). https://doi.org/10.1007/s00170-009-2125-5

    CrossRef  Google Scholar 

  23. Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E.: Spanning the length scales in dynamic simulation. Comput. Phys. 12, 538 (1998)

    CrossRef  Google Scholar 

  24. Dupuy, L.M., Tadmor, E.B., Miller, R.E., Phillips, R.: Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95(6), 060202 (2005)

    CrossRef  Google Scholar 

  25. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces, In: Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, pp. 295–1442 (1966)

    Google Scholar 

  26. Heß, M.: Einsatz von Druckkämmen zur Effizienzsteigerung von schrägverzahnten Getrieben, doctoral thesis at TU Clausthal (2018). ISBN 978-3-86948-624-6

    Google Scholar 

  27. Bucher, F., Dmitriev, A.I., et al.: Multiscale simulation of dry friction in wheel/rail contact. Wear 261, 874–884 (2006)

    CrossRef  Google Scholar 

  28. Wagner, G.J., Jones, R.E., Templeton, J.A., Parks, M.L.: An atomistic-to-continuum coupling method for heat transfer in solids. Comput. Methods Appl. Mech. Eng. 197, 3351–3365 (2008)

    MathSciNet  CrossRef  Google Scholar 

  29. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    CrossRef  Google Scholar 

  30. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 6 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik-Johannes Stromberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Stromberg, HJ., Gunkelmann, N., Lohrengel, A. (2020). A Novel Approach to Multiscale MD/FE Simulations of Frictional Contacts. In: Gunkelmann, N., Baum, M. (eds) Simulation Science. SimScience 2019. Communications in Computer and Information Science, vol 1199. Springer, Cham. https://doi.org/10.1007/978-3-030-45718-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45718-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45717-4

  • Online ISBN: 978-3-030-45718-1

  • eBook Packages: Computer ScienceComputer Science (R0)