Skip to main content

A Novel Approach to Multiscale MD/FE Simulations of Frictional Contacts

  • Conference paper
  • First Online:
Simulation Science (SimScience 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1199))

Included in the following conference series:

  • 277 Accesses

Abstract

In most applications, frictional contacts lead to a noticeable amount of wear, which influences the further frictional behavior. Thus, friction and wear have to be analyzed as a whole to gain powerful models. In such models the interactions of macroscopic and microscopic aspects have to be taken into account. Finite element (FE) simulations are the standard method to simulate macroscopic solid body mechanics. However, they are not suitable to represent microscopic behavior of bodies, especially abrasive friction depending on the roughness of the contact. In these applications, molecular dynamics (MD) simulations using explicit time integration schemes are a much better tool. The combination of both methods is an established approach for the solution of friction problems, which has been pursued by several authors. The usual way of linking both methods is to use MD domains for the boundary of contacting bodies modeled in FE instead of conventional contact elements. The interface between FE and MD domain is generally implemented by defining MD particles and FE nodes as coincident. With this approach, every time step of the MD simulation requires solving a linear equation system for the whole FE modeled solid. The computational cost of solving a sparse linear equation system is superlinearly dependent on its degrees of freedom. Furthermore, MD simulations use explicit time integration, which requires very small time steps to assure stability. Thus, it is disadvantageous to apply the current coupling method to large geometries, since large linear equation systems would have to be solved very often. In consequence, a different approach is required to apply multiscale MD/FE methods to complex geometries.

This paper introduces a novel approach to integrate multiscale capabilities into FE that allows solving large models at reasonable computational cost. The proposed approach integrates MD coupling into FE contact elements characterized by a nonlinear, history dependent friction law, which is trained with MD simulations. The roughness profile of sliding surfaces is modeled with elasto-plastic spherical caps serving as a mesoscopic level. The Hertzian contact between two spherical caps is handled at the microscopic level using an improved variant of the conventional node particle coincidence technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phy. Rev. E 74, 046710 (2006)

    Article  Google Scholar 

  2. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607 (1995)

    Article  Google Scholar 

  3. Kim, H.J., Kim, D.E.: Nano-scale friction: a review. Int. J. Precis. Eng. Manuf. 10, 141–151 (2009). https://doi.org/10.1007/s12541-009-0039-7

    Article  Google Scholar 

  4. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929 (2005)

    Article  Google Scholar 

  5. Luan, B., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36, 1–16 (2009). https://doi.org/10.1007/s11249-009-9453-3

    Article  Google Scholar 

  6. Solhjoo, S., Vakis, A.I.: Continuum mechanics at the atomic scale: Insights into non-adhesive contacts using molecular dynamics simulations. J. Appl. Phys. 120, 215102 (2016)

    Article  Google Scholar 

  7. Siu, S.W.I., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8(4), 1459–1470 (2012)

    Article  Google Scholar 

  8. Ewen, J.P., Gattinoni, C., Thakkar, F.M., Morgan, N., Spikes, H., Dini, D.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8), 651 (2016)

    Article  Google Scholar 

  9. Cha, P., Srolovitz, D.J., Vanderlick, T.K.: Molecular dynamics simulation of single asperity contact. Acta Mater. 52, 3983–3996 (2004)

    Article  Google Scholar 

  10. Jeng, Y., Su, C., Lay, Y.: An investigation of nanoscale tribological characteristics under different interaction forces. Appl. Surf. Sci. 253, 6754–6761 (2007)

    Article  Google Scholar 

  11. Yang, J., Komvopoulos, K.: A molecular dynamics analysis of surface interference and tip shape and size effects on atomic-scale friction. J. Tribol. 127, 513–521 (2001)

    Article  Google Scholar 

  12. Tran, A.S., Fang, T.H., Tsai, L.R., Chen, C.H.: Friction and scratch characteristics of textured and rough surfaces using the quasi-continuum method. J. Phys. Chem. Solids 126, 180–188 (2019)

    Article  Google Scholar 

  13. Gunkelmann, N., Alhafez, I.A., Steinberger, D., Urbassek, H.M., Sandfeld, S.: Nanoscratching of iron: a novel approach to characterize dislocation microstructures. Comput. Mater. Sci. 135, 181 (2017)

    Article  Google Scholar 

  14. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987)

    Article  Google Scholar 

  15. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79 (2006)

    Article  Google Scholar 

  16. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13, 619–642 (2001)

    Article  Google Scholar 

  17. Blau, P.J.: Scale effects in steady-state friction. Tribol. Trans. 34(3), 335–342 (1991)

    Article  MathSciNet  Google Scholar 

  18. Ramisetti, S.B., Anciaux, G., Molinari, J.-F.: MD/FE multiscale modeling of contact. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear on the Nanoscale. NT, pp. 289–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10560-4_14

    Chapter  Google Scholar 

  19. Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Phil. Mag. A 73, 1529 (1996)

    Article  Google Scholar 

  20. Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 17–20 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    Article  MathSciNet  Google Scholar 

  22. Sun, X., Cheng, K.: Multi-scale simulation of the nano-metric cutting process. Int. J. Adv. Manuf. Technol. 47, 891–901 (2010). https://doi.org/10.1007/s00170-009-2125-5

    Article  Google Scholar 

  23. Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E.: Spanning the length scales in dynamic simulation. Comput. Phys. 12, 538 (1998)

    Article  Google Scholar 

  24. Dupuy, L.M., Tadmor, E.B., Miller, R.E., Phillips, R.: Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95(6), 060202 (2005)

    Article  Google Scholar 

  25. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces, In: Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, pp. 295–1442 (1966)

    Google Scholar 

  26. Heß, M.: Einsatz von Druckkämmen zur Effizienzsteigerung von schrägverzahnten Getrieben, doctoral thesis at TU Clausthal (2018). ISBN 978-3-86948-624-6

    Google Scholar 

  27. Bucher, F., Dmitriev, A.I., et al.: Multiscale simulation of dry friction in wheel/rail contact. Wear 261, 874–884 (2006)

    Article  Google Scholar 

  28. Wagner, G.J., Jones, R.E., Templeton, J.A., Parks, M.L.: An atomistic-to-continuum coupling method for heat transfer in solids. Comput. Methods Appl. Mech. Eng. 197, 3351–3365 (2008)

    Article  MathSciNet  Google Scholar 

  29. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  Google Scholar 

  30. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 6 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik-Johannes Stromberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stromberg, HJ., Gunkelmann, N., Lohrengel, A. (2020). A Novel Approach to Multiscale MD/FE Simulations of Frictional Contacts. In: Gunkelmann, N., Baum, M. (eds) Simulation Science. SimScience 2019. Communications in Computer and Information Science, vol 1199. Springer, Cham. https://doi.org/10.1007/978-3-030-45718-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45718-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45717-4

  • Online ISBN: 978-3-030-45718-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics