Skip to main content

Optimum Design of Castellated Beams with Composite Action and Semi-rigid Connection

  • Chapter
  • First Online:
Metaheuristic Optimization Algorithms in Civil Engineering: New Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 900))

Abstract

In this chapter, some meta-heuristic algorithms consisting of particle swarm optimization, colliding bodies optimization, and enhanced colliding bodies optimization are used for the optimization of semi-rigid jointed composite castellated beams. Profile section, cutting depth, cutting angle, holes spacing, the number of filled end holes of the castellated beams and rigidity of connection is considered as the optimization variables. Constraints include the construction, moment, shear, deflection and vibration limitations. Effect of partial fixity and commercial cutting shape of a castellated beam for a practical range of beam spans and loading types are studied through numerical examples. The efficiency of three meta-heuristic algorithms is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh, A., & Ghafari, M. H. (2018). Optimum design of castellated beams: Effect of composite action and semi-rigid connections. Scientia Iranica, 25(1), 162–173.

    Google Scholar 

  2. Redwood, R., & Cho, S. H. (1993). Design of steel and composite beams with web openings. Journal of Constructional Steel Research, 25(1–2), 23–41.

    Article  Google Scholar 

  3. Ellakany, A. M., & Tablia, H. A. (2010). A numerical model for static and free vibration analysis of elastic composite beams with end shear restraint. Meccanica, 45(4), 463–474.

    Article  MathSciNet  Google Scholar 

  4. Morton, S., & Webber, J. (1994). Optimal design of a composite I-beam. Composite Structures, 28(2), 149–168.

    Article  Google Scholar 

  5. Sorkhabi, R. V., Naseri, A., & Naseri, M. (2014). Optimization of the castellated beams by particle swarm algorithms method. APCBEE Procedia, 9, 381–387.

    Article  Google Scholar 

  6. Kaveh, A., & Shokohi, F. (2016). A hybrid optimization algorithm for the optimal design of laterally-supported castellated beams. Scientia Iranica. Transaction A, Civil Engineering, 23(2), 508.

    Google Scholar 

  7. de Oliveira, T. J. L., & de Miranda Batista, E. (2009). Modelling beam-to-girder semi-rigid composite connection with angles including the effects of concrete tension stiffness. Engineering Structures, 31(8), 1865–1879.

    Article  Google Scholar 

  8. Fu, F., Lam, D., & Ye, J. (2007). Parametric study of semi-rigid composite connections with 3-D finite element approach. Engineering Structures, 29(6), 888–898.

    Article  Google Scholar 

  9. Gil, B., Goñi, R., & Bayo, E. (2013). Experimental and numerical validation of a new design for three-dimensional semi-rigid composite joints. Engineering Structures, 48, 55–69.

    Article  Google Scholar 

  10. Rex, C. O., & Easterling, W. S. (2002). Partially restrained composite beam–girder connections. Journal of Constructional Steel Research, 58(5–8), 1033–1060.

    Article  Google Scholar 

  11. Simoes, L. (1996). Optimization of frames with semi-rigid connections. Computers & Structures, 60(4), 531–539.

    Article  Google Scholar 

  12. Kameshki, E., & Saka, M. (2001). Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Computers & Structures, 79(17), 1593–1604.

    Article  Google Scholar 

  13. Ramires, F. B., de Andrade, S. A. L., da Silva Vellasco, P. C. G., & de Lima, L. R. O. (2012). Genetic algorithm optimization of composite and steel endplate semi-rigid joints. Engineering Structures, 45, 177–191.

    Article  Google Scholar 

  14. Ali, N. B. H., Sellami, M., Cutting-Decelle, A.-F., & Mangin, J.-C. (2009). Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms. Engineering Structures, 31(11), 2766–2778.

    Article  Google Scholar 

  15. Committee, A. (2010). Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago-Illinois.

    Google Scholar 

  16. Murray, T. M., Allen, D. E., & Ungar, E. E. (2003). Floor vibrations due to human activity. American Institute of Steel Construction.

    Google Scholar 

  17. Kaveh, A., & Mahdavi, V. R. (2015). Colliding bodies optimization: Extensions and applications. Cham: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaveh, A., Dadras Eslamlou, A. (2020). Optimum Design of Castellated Beams with Composite Action and Semi-rigid Connection. In: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications. Studies in Computational Intelligence, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-45473-9_3

Download citation

Publish with us

Policies and ethics