Skip to main content

Optimum Stacking Sequence Design of Composite Laminates for Maximum Buckling Load Capacity

  • Chapter
  • First Online:
Metaheuristic Optimization Algorithms in Civil Engineering: New Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 900))

  • 554 Accesses

Abstract

In this chapter, metaheuristic algorithms are applied for maximizing the buckling capacity of laminated plates. Two loading types are considered as optimization problems: deterministic and uncertain loaded composite laminates. Furthermore, different cases with various panel aspect ratios, number of layers and materials are examined to provide the optimal configurations. To account for the uncertainty in loading, the anti-optimization approach is employed. Golden Section Search (GSS) is applied for finding a robust design based on worst-case biaxial compressive loading. The results are investigated from different perspectives and sensitivity analyses are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh, A., Dadras, A., & Geran Malek, N. (2019). Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms. Engineering with Computers, 35(3), 813–832. https://doi.org/10.1007/s00366-018-0634-2.

    Article  Google Scholar 

  2. Kaveh, A., Dadras, A., & Geran Malek, N. (2019). Robust design optimization of laminated plates under uncertain bounded buckling loads. Structural and Multidisciplinary Optimization, 59(3), 877–891. https://doi.org/10.1007/s00158-018-2106-0.

    Article  MathSciNet  Google Scholar 

  3. Venkataraman, S., & Haftka, R. T. (1999). Optimization of composite panels—A review. In Proceedings—American Society for Composites (pp. 479–488).

    Google Scholar 

  4. Abrate, S. (1994). Optimal design of laminated plates and shells. Composite Structures, 29(3), 269–286.

    Article  Google Scholar 

  5. Fang, C., & Springer, G. S. (1993). Design of composite laminates by a Monte Carlo method. Journal of Composite Materials, 27(7), 721–753.

    Article  Google Scholar 

  6. Setoodeh, S., Abdalla, M. M., & Gürdal, Z. (2006). Design of variable–stiffness laminates using lamination parameters. Composites Part B Engineering, 37(4), 301–309.

    Article  Google Scholar 

  7. Huang, J., & Haftka, R. (2005). Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates. Structural and Multidisciplinary Optimization, 30(5), 335–341.

    Article  Google Scholar 

  8. Lee, D., Morillo, C., Oller, S., Bugeda, G., & Oñate, E. (2013). Robust design optimisation of advance hybrid (fiber–metal) composite structures. Composite Structures, 99, 181–192.

    Article  Google Scholar 

  9. Kalantari, M., Dong, C., & Davies, I. J. (2017). Effect of matrix voids, fibre misalignment and thickness variation on multi-objective robust optimization of carbon/glass fibre-reinforced hybrid composites under flexural loading. Composites Part B Engineering, 123, 136–147.

    Article  Google Scholar 

  10. Adali, S., Lene, F., Duvaut, G., & Chiaruttini, V. (2003). Optimization of laminated composites subject to uncertain buckling loads. Composite Structures, 62(3–4), 261–269.

    Article  Google Scholar 

  11. de Almeida, F. S. (2016). Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Composite Structures, 143, 287–299.

    Article  Google Scholar 

  12. Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: theory and analysis (2nd ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  13. Haftka, R. T., & Gürdal, Z. (2012). Elements of structural optimization. Netherlands: Springer.

    MATH  Google Scholar 

  14. Nemeth, M. P. (1986). Importance of anisotropy on buckling of compression-loaded symmetric composite plates. AIAA Journal, 24(11), 1831–1835.

    Article  Google Scholar 

  15. Rao, R. (2016). JAYA: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19–34.

    Google Scholar 

  16. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  17. Kaveh, A., & Mahdavi, V. R. (2015). Colliding bodies optimization: Extensions and applications. Cham: Springer.

    Google Scholar 

  18. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Google Scholar 

  19. De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems.

    Google Scholar 

  20. Harik, G. R., & Lobo, F. G.: (1999). A parameter-less genetic algorithm. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation (Vol. 1, pp. 258–265). San Mateo, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  21. Elishakoff, I., Haftka, R., & Fang, J. (1994). Structural design under bounded uncertainty—Optimization with anti-optimization. Computers & Structures, 53(6), 1401–1405.

    Article  Google Scholar 

  22. Lombardi, M., & Haftka, R. T. (1998). Anti-optimization technique for structural design under load uncertainties. Computer Methods in Applied Mechanics and Engineering, 157(1–2), 19–31.

    Article  Google Scholar 

  23. Kaveh, A., Dadras, A., & Malek, N. G. (2018). Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm. Acta Mechanica, 229(4), 1551–1566.

    Article  MathSciNet  Google Scholar 

  24. Rao, A. R. M., & Arvind, N. (2005). A scatter search algorithm for stacking sequence optimisation of laminate composites. Composite Structures, 70(4), 383–402.

    Article  Google Scholar 

  25. Karakaya, Ş., & Soykasap, Ö. (2009). Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Structural and Multidisciplinary Optimization, 39(5), 477–486.

    Article  Google Scholar 

  26. Soremekun, G., Gürdal, Z., Haftka, R., & Watson, L. (2001). Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers & Structures, 79(2), 131–143.

    Article  Google Scholar 

  27. Erdal, O., & Sonmez, F. O. (2005). Optimum design of composite laminates for maximum buckling load capacity using simulated annealing. Composite Structures, 71(1), 45–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaveh, A., Dadras Eslamlou, A. (2020). Optimum Stacking Sequence Design of Composite Laminates for Maximum Buckling Load Capacity. In: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications. Studies in Computational Intelligence, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-45473-9_2

Download citation

Publish with us

Policies and ethics