Skip to main content
Log in

Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the application of the biogeography-based optimization (BBO) and some of its variants in the optimization of stacking sequence of laminated composites. Harmony search is also implemented to compare its results with those of the BBO. The optimization objective is to maximize the buckling load of a symmetric and balanced laminated plate. Four laminated composites with different loadings and dimensions are studied, and the statistical comparison of the obtained configurations and buckling load capacities shows the high capability of the BBO with quadratic migration model in terms of robustness and global search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials. Part I: constant stiffness design. Compos. Struct. 90(1), 1–11 (2009). https://doi.org/10.1016/j.compstruct.2009.01.006

  2. Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Design of variable-stiffness laminates using lamination parameters. Compos. Part B Eng. 37(4), 301–309 (2006)

    Article  Google Scholar 

  3. Fang, C., Springer, G.S.: Design of composite laminates by a Monte Carlo method. J. Compos. Mater. 27(7), 721–753 (1993)

    Article  Google Scholar 

  4. Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering. Springer, Basel (2017)

    Book  MATH  Google Scholar 

  5. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  6. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv. Eng. Softw. 110(August), 69–84 (2017). https://doi.org/10.1016/j.advengsoft.2017.03.014

  7. Kaveh, A., Dadras, A.: Structural damage identification using an enhanced thermal exchange optimization algorithm. Eng. Optim. (2017). https://doi.org/10.1080/0305215X.2017

  8. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  9. Soremekun, G., Gürdal, Z., Haftka, R., Watson, L.: Composite laminate design optimization by genetic algorithm with generalized elitist selection. Comput. Struct. 79(2), 131–143 (2001)

    Article  Google Scholar 

  10. Lin, C.-C., Lee, Y.-J.: Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Compos. Struct. 63(3), 339–345 (2004)

    Article  Google Scholar 

  11. Rao, A.R.M., Arvind, N.: A scatter search algorithm for stacking sequence optimisation of laminate composites. Compos. Struct. 70(4), 383–402 (2005)

    Article  Google Scholar 

  12. Erdal, O., Sonmez, F.O.: Optimum design of composite laminates for maximum buckling load capacity using simulated annealing. Compos. Struct. 71(1), 45–52 (2005)

    Article  Google Scholar 

  13. Almeida, F., Awruch, A.: Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos. Struct. 88(3), 443–454 (2009)

    Article  Google Scholar 

  14. Karakaya, Ş., Soykasap, Ö.: Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Struct. Multidiscip. Optim. 39(5), 477–486 (2009)

    Article  Google Scholar 

  15. Sebaey, T., Lopes, C., Blanco, N., Costa, J.: Ant colony optimization for dispersed laminated composite panels under biaxial loading. Compos. Struct. 94(1), 31–36 (2011)

    Article  Google Scholar 

  16. Abachizadeh, M., Tahani, M.: An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost. Struct. Multidiscip. Optim. 37(4), 367–376 (2009)

    Article  Google Scholar 

  17. Omkar, S., Senthilnath, J., Khandelwal, R., Naik, G.N., Gopalakrishnan, S.: Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl. Soft Comput. 11(1), 489–499 (2011)

    Article  Google Scholar 

  18. de Almeida, F.S.: Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Compos. Struct. 143, 287–299 (2016)

    Article  Google Scholar 

  19. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  20. Vosoughi, A., Darabi, A., Forkhorji, H.D.: Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO. Compos. Struct. 159, 361–367 (2017)

    Article  Google Scholar 

  21. Setoodeh, A., Shojaee, M.: Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates. Polym. Compos. (2017). https://doi.org/10.1002/pc.24289

  22. Guo, W., Wang, L., Wu, Q.: Numerical comparisons of migration models for multi-objective biogeography-based optimization. Inf. Sci. 328, 302–320 (2016)

    Article  Google Scholar 

  23. Simon, D., Ergezer, M., Du, D., Rarick, R.: Markov models for biogeography-based optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(1), 299–306 (2011)

  24. Bhattacharya, A., Chattopadhyay, P.K.: Biogeography-based optimization for different economic load dispatch problems. IEEE Trans. Power Syst. 25(2), 1064–1077 (2010)

    Article  Google Scholar 

  25. Wang, L., Xu, Y.: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 38(12), 15103–15109 (2011)

    Article  MathSciNet  Google Scholar 

  26. Roy, P., Ghoshal, S., Thakur, S.: Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization. Int. J. Electr. Power Energy Syst. 43(1), 830–838 (2012)

    Article  Google Scholar 

  27. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl. Math. Model. 38(9), 2454–2462 (2014)

    Article  MathSciNet  Google Scholar 

  28. Aydogdu, I.: Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Eng. Optim. 49(3), 381–400 (2017)

    Article  Google Scholar 

  29. Aydogdu, I., Akin, A.: Biogeography based Co\(_{2}\) and cost optimization of RC cantilever retaining walls. In: 17th International Conference on Structural Engineering, pp. 1480–1485 (2015)

  30. Saka, M., Carbas, S., Aydogdu, I., Akin, A., Geem, Z.: Comparative study on recent metaheuristic algorithms in design optimization of cold-formed steel structures. In: Engineering and Applied Sciences Optimization, pp. 145–173. Springer, Berlin (2015)

  31. Jalili, S., Hosseinzadeh, Y., Taghizadieh, N.: A biogeography-based optimization for optimum discrete design of skeletal structures. Eng. Optim. 48(9), 1491–1514 (2016)

    Article  Google Scholar 

  32. Çarbaş, S.: Optimum structural design of spatial steel frames via biogeography-based optimization. Neural Comput. Appl. 28(6), 1525–1539 (2017)

    Article  Google Scholar 

  33. Yang, G., Liu, Y.: Optimizing an equilibrium supply chain network design problem by an improved hybrid biogeography based optimization algorithm. Appl. Soft Comput. 58, 657–668 (2017)

  34. Kaveh, A., Dadras, A.: Optimal decomposition of finite element meshes via k-median methodology and different metaheuristics. Int. J. Optim. Civil Eng. 8(2), 227–246 (2018)

    Google Scholar 

  35. Ma, H., Simon, D.: Evolutionary Computation with Biogeography-Based Optimization. Wiley, Hoboken (2017)

    Book  Google Scholar 

  36. Wu, J., Vankat, J.L.: Island biogeography: theory and applications. Encycl. Environ. Biol. 2, 371–379 (1995)

    Google Scholar 

  37. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, vol. 2. Addison-Wesley, Reading (1989)

  38. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  39. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, vol. 11. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Dadras, A. & Malek, N.G. Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm. Acta Mech 229, 1551–1566 (2018). https://doi.org/10.1007/s00707-017-2068-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2068-0

Navigation