Skip to main content

Genetic and Ecological Characterization of the Invasive Wetland Grasses Arundo donax and Phragmites australis in the Cuatro Ciénegas Basin

  • Chapter
  • First Online:
Plant Diversity and Ecology in the Chihuahuan Desert

Abstract

Arundo donax and Phragmites australis are two of the most aggressive invasive grasses worldwide, both are associated with wetlands and can be very abundant, becoming dominant in these ecosystems. These two species are common in northern Mexico. Genetic and ecological characterization of A. donax in two populations from the state of Coahuila (North of Mexico) indicate that they are less clonal and more variable, as well as with a higher genetic diversity compared to populations in other parts of the world and suggest that their genotypes are adapted to different environmental conditions and may represent independent introductions. On the other hand, genealogical analyses show that two independent lineages of P. australis are present in Mexico, the Gulf Coast subspecies, P. australis ssp. berlandieri, found across Mexico, including the state of Coahuila, and the endemic native subspecies, P. australis ssp. americanus, found in a population from Cuatro Ciénegas Basin (CCB) (Coahuila, Mexico). Here, we conduct a review of the genetic and ecological characteristics of both species in the Chihuahuan Desert, mainly focusing in CCB. The aim is to provide a better understanding in the evolutionary ecology of these two closely related and ecologically similar species and determine if these species of grasses represent a risk for the ecosystem and the valley’s biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad R, Liow P, Spencer D et al (2008) Molecular evidence for a single genetic clone of invasive Arundo donax in the USA States. Aquatic Botany 88:113–120

    CAS  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conservation Biology 17:24–30

    Google Scholar 

  • An JX, Wang Q, Yang J et al (2012) Phylogeographic analyses of Phragmites australis in China: Native distribution and habitat preference of the haplotype that invaded North America. Journal of Systematics and Evolution 50:334–340

    Google Scholar 

  • Baldwin AH, Kettenring KM, Whigham DF (2010) Seed banks of Phragmites australis-dominated brackish wetlands: Relationships to seed viability, inundation, and land cover. Aquatic Botany 93:63–169

    Google Scholar 

  • Bell GP (1997) Ecology and management of Arundo donax, and approaches to riparian habitat restoration in southern California. In: Brock JH, Wade M, Pysek P, Green D (eds) Plant Invasions: Studies from North America and Europe. Backhuys publishers, Leiden, The Netherlands, pp 103–113

    Google Scholar 

  • Belzile F, Labbe J, Leblanc M et al (2010) Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biological Invasions 12:2243–2250

    Google Scholar 

  • Bjôrk S (1967) Ecologic investigation of Phragmites communis. Studies in the theoretic and applied limnology. Folia Limnologica Scandinavica 14:1–248

    Google Scholar 

  • Blackburn TM, Essl F, Evans T (2014) A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12:e1001850

    PubMed  PubMed Central  Google Scholar 

  • Boland JC (2006) The importance of layering in the rapid spread of Arundo donax (giant reed). Madrono 53:303–312

    Google Scholar 

  • Booth D, Provan J, Maggs CA (2007) Molecular approaches to the study of invasive seaweeds. Botanica Marina 50:385–396

    CAS  Google Scholar 

  • Brisson J, Paradis E, Bellavance M (2008) Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: A possible consequence of global warming. Rhodora 110:225–230

    Google Scholar 

  • Bruckart W, Cavin C, Vajna L et al (2004) Differential susceptibility of Russian thistle accessions to Colletotrichum gloeosporioides. Biol Control 30:306–311

    Google Scholar 

  • Buckley J, Butlin RK, Bridle JR (2012) Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change. Molecular Ecology 21:267–280

    PubMed  Google Scholar 

  • Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. Journal of Applied Ecology 18:957–966

    Google Scholar 

  • Burdon JJ, Marshall DR (1981) Biological control and the reproductive mode of weeds. Journal of Applied Ecology 18:649–658

    Google Scholar 

  • Campbell AL (2007) Sexual Reproduction in Non-Native Common Reed, Phragmites australis. M.S. thesis. Ohio State University. Columbus, OH, USA

    Google Scholar 

  • Carson EW, Souza V, Espinosa-Perez H et al (2015) Mitochondrial DNA diversity and phylogeography of Lucania interioris inform biodiversity conservation in the Cuatro Ciénegas basin, Mexico. Western North Naturalist 75:200–208

    Google Scholar 

  • Chapman H, Robson B, Pearson ML (2004) Population genetic structure of a colonising, triploid weed, Hieracium lepidulum. Heredity 92:182–188

    CAS  PubMed  Google Scholar 

  • Clark LV, Evans KJ, Jasieniuk M (2013) Origins and distribution of invasive Rubus fruticosus L. agg. (Rosaceae) clones in the western United States. Biol Invasions 15:1331–1342

    Google Scholar 

  • Clevering OA, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquatic Botany 64:185–208

    Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Molecular Ecology 24:1999–2017

    PubMed  Google Scholar 

  • Colin R, Eguiarte LE (2016) Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. American Journal of Botany 103:876–887

    CAS  PubMed  Google Scholar 

  • CONABIO (2018) Sistema de información sobre especies invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://www.biodiversidad.gob.mx/especies/Invasoras/invasoras.html. Accessed Sep 2018

  • CONANP (2018) Programa Nacional de Áreas Naturales Protegidas, 2014–2018. Comisión Nacional de Áreas Naturales Protegidas. Mexico City, Mexico

    Google Scholar 

  • CONANP (2016). https://www.gob.mx/conanp/acciones-y-programas/areas-naturales-protegidas-decretadas Accessed Sep 2018

  • Conert HJ (1961) Die Systematik und Anatomie der Arundinae. Cramer, Weinheim, West Germany

    Google Scholar 

  • Contreras-Arquieta A, Cruz-Nieto M (2007) Control de la planta invasora Arundo donax en Cuatro Ciénegas, un centro de gran biodiversidad de especies endémicas de flora y fauna de Norteamérica. Informe técnico final de Pronatura Noreste, AC, US Fish & Wildlife Service. Monterrey, Nuevo León, Mexico

    Google Scholar 

  • Curn V, Kubatova B, Vavrova P et al (2007) Phenotypic and genotypic variation of Phragmites australis: comparison of populations in two human-made lakes of different age and history. Aquatic Botany 86:321–330

    Google Scholar 

  • D’Antonio CM, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restoration Ecology 10:703–713

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasion by exotic grasses, the grass-fire cycle and global change. Annual Review of Ecology and Systematics 23:63–88

    Google Scholar 

  • Danin A (2004) Arundo (Gramineae) in the Mediterranean reconsidered. Willdenowia 34:361–369

    Google Scholar 

  • Den Hartog C, Kvet J, Sukopp H (1989) Reed: a common species in decline. Aquatic Botany 35:1–4

    Google Scholar 

  • Di Tomaso JM, Healey EA (2003) Aquatic and riparian weeds of the west. University of California—Agriculture and Natural Resources Publication 3421:254–262

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17:431–449

    CAS  PubMed  Google Scholar 

  • Dudley TL (2000) A. donax L. In: Bossard CC, Randall JM, Hoshovsky MC (eds) Invasive Plants of California’s Wildlands. University of California Press, Berkeley, CA, USA, pp 53–58

    Google Scholar 

  • Dudley TL, Collins B (1995) Biological Invasions in California Wetlands: The Impacts and Control of Non-indigenous Species in Natural Areas. Pacific Institute for SIDES, Oakland, CA, USA

    Google Scholar 

  • Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. American Journal of Botany 74:123–131

    Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    CAS  PubMed  Google Scholar 

  • Engloner AI (2009) Structure, growth dynamics and biomass of reed (Phragmites australis) A review. Flora 204:331–346

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Facon BB, Genton J, Shykoff J (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends in Ecology and Evolution 21:130–135

    PubMed  Google Scholar 

  • Fer T, Hroudova Z (2009) Genetic diversity and dispersal of Phragmites australis in a small river system. Aquatic Botany 90:165–171

    Google Scholar 

  • Futuyma DJ (2013) Evolution, 3rd edn. Sinauer, Sunderland, MA, USA

    Google Scholar 

  • García-Ramos G, Rodríguez D (2002) Evolutionary speed of species invasions. Evolution 56:661–668

    PubMed  Google Scholar 

  • Gaskin JF, Dao-Yuan Z, Bon M-C (2005) Invasion of Lepidium draba (Brassicaceae) in the western United States: distributions and origins of chloroplast DNA haplotypes. Molecular Ecology 14:2331–2341

    CAS  PubMed  Google Scholar 

  • Goolsby JA, De Barro PJ, Makinson JR et al (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Molecular Ecology 15:287–297

    CAS  PubMed  Google Scholar 

  • Goolsby JA, Moran PJ (2009) Host range of Tetramesa romana Walker (Hymenoptera: Eurytomidae), a potential biological control of giant reed, Arundo donax L. in North America. Biological Control 49:160–168

    Google Scholar 

  • Goolsby JA, Moran PJ, Adamczyk JA et al (2009) Host range of the European, rhizome-stem feeding scale Rhizaspidiotus donacis (Leonardi) (Hemiptera: Diaspididae), a candidate biological control agent for giant reed, Arundo donax L. (Poales: Poaceae) in North America. Biocontrol Science and Technology 19:899–918

    Google Scholar 

  • Goolsby JA, Moran PJ, Racelis AE et al (2015) Impact of the biological control agent Tetramesa romana (Hymenoptera: Eurytomidae) on Arundo donax (Poaceae: Arundinoideae) along the Rio Grande River in Texas. Biocontrol Science and Technology 26:47–60

    Google Scholar 

  • Goolsby JA, Racelis AE, Goolsby JB et al (2013) Evaluation of biogeographical factors in the native range to improve the success of biological control agents in the introduced range. Biocontrol Science and Technology 23:1213–1230

    Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of Missouri Botanical Garden 88:373–457

    Google Scholar 

  • Haddadchi A, Gross CL, Fatemi M (2013) The expansion of sterile Arundo donax (Poaceae) in southeastern Australia is accompanied by genotypic variation. Aquatic Botany 104:153–161

    Google Scholar 

  • Hallatschek O, Nelson DR (2008) Gene surfing in expanding populations. Theor Popul Biol 73:158–170

    PubMed  Google Scholar 

  • Hansen RM (1978) Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 3:302–319

    Google Scholar 

  • Hansen DL, Lambertini C, Jampeetong A et al (2007) Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquatic Botany 86:269–279

    Google Scholar 

  • Hardion L, Verlaque R, Baumel A et al (2012) Revised systematics of Mediterranean Arundo (Poaceae) based on AFLP fingerprints and morphology. Taxon 61:1217–1226

    Google Scholar 

  • Hendrickson DA, Mcgaugh S (2005) Arundo donax (Carrizo Grande / Giant Cane) in Cuatro Ciénegas. http://desertfishes.org/cuatroc/organisms/non-native/arundo/Arundo.html. Accessed September 2018

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978. http://www.worldclim.org Accessed September 2018

  • Howard R, Travis SE, Sikes BA (2008) Rapid growth of a Eurasian haplotype of Phragmites australis in a restored brackish marsh in Louisiana, USA. Biological Invasions 10:369–379

    Google Scholar 

  • Hufbauer RA (2004) Population Genetics of Invasions: Can We Link Neutral Markers to Management? Weed Technology 18:1522–1527

    Google Scholar 

  • INE (1999) Programa de Manejo del Área de Protección de Flora y Fauna Cuatrociénegas. Instituto Nacional de Ecología, Tlacopac, DF, Mexico

    Google Scholar 

  • Instituto Nacional de Ecología y Cambio Climático (2016). https://www.gob.mx/inecc/acciones-y-programas/analisis-de-la-variacion-del-nivel-de-los-principales-cuerpos-de-agua-de-cuatrocienegas Accessed Sep 2018

  • Ishii J, Kadono Y (2002) Factors influencing seed production of Phragmites australis. Aquatic Botany 72:129–141

    Google Scholar 

  • Johnson M, Dudley T, Burns C (2006) Seed production in Arundo donax? California Invasive Plant Council 14:12–13

    Google Scholar 

  • Kang M, Buckley YM, Lowe AJ (2007) Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Molecular Ecology 16:4662–4673

    CAS  PubMed  Google Scholar 

  • Kelager A, Pedersen JS, Bruun HH (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141

    Google Scholar 

  • Khudamrongsawat J, Tayyar R, Holt J (2004) Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Science 52:395–405

    CAS  Google Scholar 

  • Kirk H, Paul J, Straka J et al (2011) Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. American Journal of Botany 98:1180–1190

    PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16:199–204

    PubMed  Google Scholar 

  • Lambert AM, Casagrande RA (2007) Characteristics of a successful estuarine invader: evidence of self-compatibility in native and non-native lineages of Phragmites australis. Mar. Ecol. Prog. Ser. 337:299–301

    Google Scholar 

  • Lambert AM, Dudley TL, Saltonstall K (2010) Ecology and Impacts of the Large-Statured Invasive Grasses Arundo donax and Phragmites australis in North America. Invasive Plant Science and Management 3:489–494

    Google Scholar 

  • Lambertini C, Gustafsson MHG, Frydenberg J et al (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution 258:161–182

    Google Scholar 

  • Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasión dynamics. Ecology 85:2061–2070

    Google Scholar 

  • Latombe G, Pyšek P, Jeschke JM et al (2016) A vision for global monitoring of biological invasions. Biological Conservation 213:295–308

    Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends in Ecology and Evolution 17:386–391

    Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10:689–710

    Google Scholar 

  • Mariani C, Cabrini R, Danin A et al (2010) Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. Annals of Applied Biology 57:191–202

    Google Scholar 

  • Marks M, Lapin B, Randall J (1994) Phragmites australis (P. communis): threats, management, and monitoring. Nat. Areas J. 14:285–294

    Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biological Invasions 10:561–572

    Google Scholar 

  • McCauley DE, Smith RA, Lisenby JD et al (2003) The hierarchical spatial distribution of chloroplast DNA polymorphism across the introduced range of Silene vulgaris. Molecular Ecology 12:3227–3235

    CAS  PubMed  Google Scholar 

  • McCormick MK, Kettenring KM, Baron HM et al (2010) Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30:67–74

    Google Scholar 

  • Meyerson LA, Lambert AM, Saltonstall K (2010) A Tale of Three Lineages: Expansion of Common Reed (Phragmites australis) in the U.S. Southwest and Gulf Coast. Invasive Plant Science and Management 3:515–520

    Google Scholar 

  • Meyerson LA, Saltonstall K, Chambers RM (2009) Phragmites australis in eastern North America: A historical and ecological perspective. In: Silliman BR, Grosholz E, Bertness MD (eds) Salt Marshes Under Global Siege. University of California Press, California, USA, pp 57–82

    Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2010) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biological Invasions 12:103–111

    Google Scholar 

  • Minckley WL (1992) Three decades near Cuatro Ciénegas. Mexico: photographic documentation and a plea for area conservation. J Ariz-Nev Acad Sci 26:89–118

    Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science 43:1235–1248

    Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98:5446–5451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ndlovu J, Richardson DM, Wilson JRU et al (2013) Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Ann Bot (Lond) 111:895–904

    Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species. Influence of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates, Sunderland, MA, USA, pp 201–228

    Google Scholar 

  • Pellegrin D, Hauber DP (1999) Isozyme variation among populations of the clonal species, Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany 63:241–259

    CAS  Google Scholar 

  • Perdue RE (1958) Arundo donax: source of musical reeds and industrial cellulose. Economic Botany 12:368–404

    Google Scholar 

  • Pilu R, Cassani E, Landoni M et al (2014) Genetic characterization of an Italian Giant Reed (Arundo donax L.) clones collection: exploiting clonal selection. Euphytica 196:169–181

    Google Scholar 

  • Pleines T, Jakob SS, Blattner FR (2009) Application of non-coding DNA regions in intraspecific analyses. Plant Systematics and Evolution 282:281–294

    CAS  Google Scholar 

  • Polunin O, Huxley A (1987) Flowers of the Mediterranean. Hogarth Press, London, UK

    Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE et al (2008) Adaptive evolution in invasive species. Trends in Plant Sciences 13:288–294

    CAS  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecology 25:497–506

    Google Scholar 

  • Rice D, Rooth J, Stevenson JC (2000) Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280–299

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annual Review of Ecology and Systematics 32:305–332

    Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Google Scholar 

  • Saltonstall K (2003a) Genetic variation among North American Populations of Phragmites australis: implications for management. Estuaries 26:444–451

    Google Scholar 

  • Saltonstall K (2003b) Microsatellite variation within and among North American lineages of Phragmites australis. Molecular Ecology 12:1689–1702

    CAS  PubMed  Google Scholar 

  • Saltonstall K, Hauber DP (2007) Notes in Phragmites australis (Poaceae: Arundinoidae) in North America. Journal of the Botanical Research Institute of Texas I(I):385–388

    Google Scholar 

  • Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp. Americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. Sida 21:683–692

    Google Scholar 

  • Saltonstall K, Stevenson JC (2007) The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquatic Botany 86:331–336

    CAS  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH et al (2007) Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution 22:465–471

    PubMed  Google Scholar 

  • SEMARNAP (1997) Programa de Conservación de la Vida Silvestre y Diversificación Productiva en el Sector Rural, 1997–2000. Secretaría de Medio Ambiente, Recursos Naturales y Pesca, México, DF, Mexico

    Google Scholar 

  • Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow salt cedar to invade cold climates in North America. Ecol Appl 12:1652–1660

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Google Scholar 

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28:58–66

    PubMed  Google Scholar 

  • Souza V, Escalante AE, Espinoza LE et al (2004) Cuatro Ciénegas: un laboratorio natural de astrobiología. Ciencias 75:4–12

    Google Scholar 

  • Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570

    Google Scholar 

  • Souza V, Siefert JL, Escalante AE et al (2012) The Cuatro Ciénegas Basin in Coahuila, Mexico: An astrobiological Precambrian Park. Astrobiology 12:641–647

    PubMed  PubMed Central  Google Scholar 

  • Stein BA, Kutner LS, Adams JS (2000) Precious Heritage: The Status of Biodiversity in the United States. Oxford University Press, Oxford, UK

    Google Scholar 

  • Sterling TM, Thompson DC, Abbott LB (2004) Implications of invasive plant variation for weed management. Weed Technology 18:1319–1324

    Google Scholar 

  • Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci USA103:5841–5845

    Google Scholar 

  • Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Molecular Ecology 17:351–360

    PubMed  Google Scholar 

  • Tarin DA, Pepper E, Goolsby JA et al (2013) Microsatellites Uncover Multiple Introductions of Clonal Giant Reed (Arundo donax). Invasive Plant Science and Management 6:328–338

    Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. John Wiley, Hoboken, NJ, USA

    Google Scholar 

  • Trewick SA, Morgan-Richards M, Chapman HM (2004) Chloroplast DNA diversity of Hieracium pilosella (ASTERACEAE) introduced to New Zealand: reticulation, hybridization, and invasion. American Journal of Botany 91:73–85

    CAS  PubMed  Google Scholar 

  • Vellend M, Harmon LJ, Lockwood JL et al (2007) Effects of exotic species on evolutionary diversification. Trends in Ecology and Evolution 22:481–488

    PubMed  Google Scholar 

  • Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    PubMed  Google Scholar 

  • Ward DB (2010) North America has two species of Phragmites (Gramineae). Castanea 75:394–401

    Google Scholar 

  • Ward SM, Gaskin JF, Wilson LM (2008) Ecological Genetics of Plant Invasion: What Do We Know? Invasive Plant Science and Management 1:98–109

    Google Scholar 

  • Ward SM, Reid SD, Harrington J et al (2008) Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States. Weed Sci 56:394–399

    CAS  Google Scholar 

  • Williams CMJ, Biswas TK, Schrale G et al (2008) Use of saline land and wastewater for growing a potential biofuel crop (Arundo donax L.). In: Irrigation Australia 2008 Conference CD of Proceedings, Melbourne, Australia, 20–22 May. Available from: http://irrigation.org.au/publications-resources/2008-irrigation-australia-conference-papers

  • Zhao R, Cheng Z, Lu W et al (2006) Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chinese Science Bulletin 51:1219–1227

    CAS  Google Scholar 

  • Zhao J, Solis-Montero L, Lou A et al (2013) Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae). PLoS One 8:e79807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary M (1962) Plant life of Palestiene: Israel and Jordan. Ronald Press, New York, NY, USA

    Google Scholar 

Download references

Acknowledgments

The manuscript was written during a sabbatical leave of LEE in the University of Minnesota, Department of Plant and Microbial Biology, in the laboratory of Peter Tiffin, with support of the program PASPA- DGAPA, UNAM. We deeply acknowledge the detailed reviews of the manuscript by Irene Pisanty and by Erika Aguirre Planter. Ricardo Colin Nuñez was a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 215751 from CONACyT. We thank the Programa de Posgrado de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and the Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, UNAM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colin, R., Eguiarte, L.E. (2020). Genetic and Ecological Characterization of the Invasive Wetland Grasses Arundo donax and Phragmites australis in the Cuatro Ciénegas Basin. In: Mandujano, M., Pisanty, I., Eguiarte, L. (eds) Plant Diversity and Ecology in the Chihuahuan Desert. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-44963-6_15

Download citation

Publish with us

Policies and ethics