Skip to main content
Log in

Survival and postglacial immigration of the steppe plant Scorzonera purpurea to Central Europe

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Temperate grasslands belong to the most diverse plant communities of Central Europe. However, there is still a lack of information about glacial refugia and migration processes of herbaceous grassland and especially steppe species in Central Europe. Therefore, we analyzed the survival and postglacial immigration of Scorzonera purpurea to Central Europe. We investigated 348 individuals from 37 populations in Europe using amplified fragment length polymorphisms and chloroplast microsatellite analyses. Our study revealed two major genetic groups along the European distribution range consisting of western populations on the one hand and closely related central and (south)eastern populations on the other hand. Genetic variation was highest within populations from the Pannonian basin and decreased toward Western and Central Europe. Our study gives evidence for the long-term survival of S. purpurea in Western Europe and the postglacial immigration from the southeastern parts of Europe, maybe by domestic livestock of migrating farmers during the Neolithic age to Central Europe. Immigration presumably followed two routes from Pannonia along the river Danube into Southern Germany and from Pannonia along the northern border of the Carpathians to Northern Germany. In Central Germany, the different genetic lineages may have met and formed contact zones. Our data show that steppe species may both have survived in and immigrated to Western and Central Europe. Further and more detailed studies on other steppe species are, therefore, needed to investigate the origin of these rare and often endangered species more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Molec Ecol 13:3261–3273

    Article  CAS  Google Scholar 

  • Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R (2003) Glacial survival or tabula rasa ? The history of North Atlantic biota revisited. Taxon 52:417–450

    Article  Google Scholar 

  • Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Molec Ecol 17:3379–3388

    Article  Google Scholar 

  • Chytrý M, Danihelka J, Horsák M, Koči M, Kubeŝova S, Lososová Z, Otýpkova Z, Tichý M, Martynenko VB, Baisheva EZ (2010) Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe. J Biogeogr 37:767–780

    Article  Google Scholar 

  • Cieślak E (2014) Phylogeography of pontic-pannonian species an central Europe. Polish Bot Stud 30:1–53

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Pl Sci 3:432–438

    Article  Google Scholar 

  • Dyer RJ, Nason J (2004) Population Graphs: the graph-theoretic shape of genetic structure. Molec Ecol 13:1713–1728

    Article  Google Scholar 

  • Dyer RJ, Nason J, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topolgy of population networks. Molec Ecol 19:3746–3759

    Article  Google Scholar 

  • Ehrich D (2006) aflpdat: a collection of r functions for convenient handling of AFLP data. Molec Ecol Notes 6(3):603–604

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578

    Article  CAS  Google Scholar 

  • Feurdean A, Marinova E, Nielsen AB, Liakka J, Veres D, Hutchinson SM, Braun M, Timar-Gabor A, Astalos C, Moosbrugger V, Hickler T (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963

    Article  Google Scholar 

  • Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Amer J Bot 85:811–819

    Article  CAS  Google Scholar 

  • Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222

    Article  Google Scholar 

  • Franzke A, Hurka H, Janssen D, Neuffer B, Friesen N, Markov M, Mummenhoff K (2004) Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: clausia aprica (Brassicaceae). Molec Ecol 13:2789–2795

    Article  CAS  Google Scholar 

  • Gradmann R (1950) Das Pflanzenleben der Schwäbischen Alb. 4. Aufl. Verläg Schwab. Alp. Verein, Stuttgart

  • Gronenborn D (2007) Beyond the models: “Neolithisation” in Central Europe. In: Whittle A, Cummings V (eds) Going over: the Mesolithic–Neolithic transition in north-west Europe. Oxford University Press, Oxford, pp 73–98

    Google Scholar 

  • Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, Der Sarkissian CSI, Brandl G, Schwarz C, Nicklisch N, Dresely V, Fritsch B, Balanovska E, Villems R, Meller H, Alt KW, Cooper A, Consortium G (2010) Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities. PLoS Biol 8:e1000536. doi:10.1371/journal.pbio.1000536

  • Hensen I, Oberprieler C (2005) Effects of population size on genetic diversity and seed production in the rare Dictamnus albus (Rutaceae) in Central Germany. Conserv Genet 6:63–73

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European Biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Horsák M, Chytrý M, Pokryszo BM, Danihelka J, Ermakov N, Hájek M, Hájková P, Kintrova K, Koči M, Kubešová S, Lustyk P, Otýpková Z, Pelánková B, Valachovič M (2010) Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of paleoenvironments of full-glacial Europe. J Biogeogr 37:1450–1462

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Kuneš P, Pelánková B, Chytrý M, Jankovská V, Pokorný P, Petr L (2008) Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J Biogeogr 35:2223–2236

    Article  Google Scholar 

  • Lang G (1994) Quartäre Vegetationsgeschichte Europas. G. Fischer Verlag, Jena

    Google Scholar 

  • Litzelmann E (1938) Pflanzenwanderungen im Klima der Nacheiszeit. Hohenlohesche Buchhandlung Ferd, Rau

    Google Scholar 

  • Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. J Biogeogr 37:915–935

    Article  Google Scholar 

  • Malm JU, Prentice HC (2002) Immigration history and gene dispersal: allozyme variation in Nordic populations of the red campion, Silene dioica (Caryophyllaceae). Biol J Linn Soc 77:23–34

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Manzano P, Malo JE (2006) Extreme long-distance seed dispersal via sheep. Front Ecol Environ 4:244–248

    Article  Google Scholar 

  • Mavrodiev EV, Edwards CE, Albach DC, Gitzendanner MA, Soltis PS, Soltis DE (2004) Phylogenetic relationships in subtribe Scorzonerinae (Asteraceae: Cichorioideae: Cichorieae) based on ITS sequence data. Taxon 53:699–712

    Article  Google Scholar 

  • Meindl C (2011) New aspects in plant conservation—phylogeography, population dynamics, genetics and management of steppe plants in Bavaria. PhD Thesis, Universität Regensburg, Regensburg

  • Miyashita NT, Kawabe A, Innan H (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152:1723–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2001) GenalEx: Genetic Analysis in Excel. 5 edn. Australian National University. http://www.anu.edu.au/BoZo/GenAlEx, Canberra

  • Pokorný P (2005) Role of man in the development of Holocene vegetation in Central Bohemia. Preslia 77:113–128

    Google Scholar 

  • Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? Holocene 27:716–726

    Article  Google Scholar 

  • Poschlod P (2015) Geschichte der Kulturlandschaft. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Poschlod P, Baumann A (2010) The historical dynamics of calcareous grasslands in the Central and Southern Franconian jurassic mountains—a comparative pedoanthracological and pollen analytical study. Holocene 20:13–23

    Article  Google Scholar 

  • Poschlod P, Bonn S (1998) Changing dispersal processes in the central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47:27–44

    Google Scholar 

  • Poschlod P, Baumann A, Karlik P (2009) Origin and development of grasslands in central Europe. In: Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) Grasslands in Europe - of high nature value. KNNV Publishing, Zeist, pp 15–25

    Chapter  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inferring of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisch C (2008) Glacial history of Saxifraga paniculata (Saxifragaceae)—molecular biogeography of a disjunct arctic-alpine species in Europe and North America. Biol J Linn Soc 93:385–398

    Article  Google Scholar 

  • Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2nd edn. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  • Römermann C, Tackenberg O, Poschlod P (2005) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–230

    Article  Google Scholar 

  • Ronikier M, Costa A, Aguilar JF, Feliner GN, Küpfer P, Mirek Z (2008) Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J Biogeogr 35:1650–1664

    Article  Google Scholar 

  • Sakaguchi S, Takeuchi Y, Yamasaki M, Sakurai S, Isagi Y (2011) Lineage admixture during postglacial range expansion is responsible for the increased gene diversity of Kalopanax septemlobus in a recently colonised territory. Heredity 107:338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt T, Seitz A (2001) Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biol J Linn Soc 74:429–458

    Google Scholar 

  • Schnittler M, Günther KF (1999) Central European vascular plants requiring priority conservation measures—an analysis from national Red Lists and distribution maps. Biodivers & Conserv 8:891–925

    Article  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Schönswetter P, Tribsch A, Niklfeld H (2003) Phylogeography of the high alpine cushion plant Androsace alpina (Primulaceae) in the European Alps. Pl Biol 5:623–630

    Article  Google Scholar 

  • Svenning JC (2002) A review of natural vegetation openness in north-western Europe. Biol Conserv 104:133–148

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464

    Article  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webb DA (1964) Flora Europaea, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Tyler T (2002a) Geographical distribution of allozyme variation in relation to post-glacial history in Carex digitata, a widespread European woodland sedge. J Biogeogr 29:919–930

    Article  Google Scholar 

  • Tyler T (2002b) Large-scale geographic patterns of genetic variation in Melica nutans, a widespread Eurasian woodland grass. Pl Syst Evol 236:73–87

    Article  CAS  Google Scholar 

  • Vekemans X (2002) AFLP-surv version 1.0. Distributed by the author Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium 16

  • Vos P, Hogers R, Bleeker M, Reijnans M, van de Lee T, Hornes M, Frijtjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrancken J, Brochmann C, Wesselingh RA (2009) How did an annual plant react to Pleistocene glaciations? Postglacial history of Rhinanthus angustifolius in Europe. Biol J Linn Soc 98:1–13

    Article  Google Scholar 

  • Walter R, Epperson BK (2005) Geographic pattern of genetic diversity in Pinus resinosa: contact zone between descendants of glacial refugia. Amer J Bot 92:92–100. doi:10.3732/ajb.92.1.92

    Article  Google Scholar 

  • Walter H, Straka H (1970) Arealkunde—Floristisch-historische Geobotanik, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Wróblewska A (2008) From the center to the margins of geographical range: molecular history of steppe plant Iris aphylla L. in Europe. Pl Syst Evol 272:49–65

    Article  Google Scholar 

  • Wróblewska A, Brzosko E (2006) The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range. Bot J Linn Soc 152:245–255

    Article  Google Scholar 

  • Wróblewska A, Brzosko E, Czarnecka B, Nowosielski J (2003) High levels of genetic diversity in populations of Iris aphylla L. (Iridaceae), an endangered species in Poland. Bot J Linn Soc 142:65–72

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyles TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, Alberta

    Google Scholar 

  • Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci USA 105:11597–11604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Karl-Georg Bernhardt, Isabell Hensen, Andreas Hilpold, Petr Karlik, Marek Kucharczyk, Juditha Lihová, Jörg Meister, Wojciech Paul, Michael Ristow, Martin Scheuerer, Adrian Stoica, Gábor Turcsányi, Polina Volkova and Viktoria Wagner for collecting plant material used in this study. The Podospermum localities in the Cevenne Mountains were introduced to Peter Poschlod by Frantz Hopkins. We thank government agencies and the Cevennes National Parc that granted permits to collect specimens and for providing information about S. purpurea localities. We are grateful to Sabine Fischer for providing cartographical material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Reisch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andreas Tribsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meindl, C., Brune, V., Listl, D. et al. Survival and postglacial immigration of the steppe plant Scorzonera purpurea to Central Europe. Plant Syst Evol 302, 971–984 (2016). https://doi.org/10.1007/s00606-016-1311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1311-9

Keywords

Navigation