Skip to main content

Senolysis and Senostasis Through the Plasma Membrane

  • Chapter
  • First Online:
Senolytics in Disease, Ageing and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 11))

Abstract

With increasing evidence that senescent cells are detrimental towards a range of age-associated diseases and physiologic declines, there is rising urgency to develop interventions to suppress their adverse effects. Most senolytic approaches aim to eliminate senescent cells by rendering them vulnerable to apoptosis, while senostatic (senomorphic) approaches do not destroy the cell and instead suppress a specific senescent trait. In both senolysis and senostasis, the major goals include reducing the senescence-associated secretory phenotype (SASP) and to enhance the immunogenicity of the senescent compartment. These therapeutic aims are best elicited from the plasma membrane, although efforts to identify plasma membrane targets are only now beginning. We discuss several plasma membrane proteins expressed preferentially in senescent cells and their roles in neutralizing senescent cells by immune-mediated senolysis (as reported for DPP4, VIM, and NKFB2 ligands) and by suppressing the SASP (as reported for SCAMP4 and CD36). We identify the advantages and challenges of developing therapeutic approaches directed at the plasma membrane of senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93(24):13742–13747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A et al (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis 5(11):e1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24:2842–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113(1):8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biran A, Perelmutter M, Gal H, Burton DG, Ovadya Y, Vadai E et al (2015) Senescent cells communicate via intercellular protein transfer. Genes Dev 29(8):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch J, Barnes PJ, Passos JF (2018) Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther 183:34–49

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21(1):107–112

    Article  CAS  PubMed  Google Scholar 

  • Cang S, Iragavarapu C, Savooji J, Song Y, Liu D (2015) ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 8:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K et al (2019) Transcriptome signature of cellular senescence. Nucl Acids Res 47(14):7294–7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15(11):1139–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong M, Yin T, Chen R, Xiang H, Yuan L, Ding Y et al (2018) CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep 19(6):pii: e45274

    Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  • Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui H, Kong Y, Xu M, Zhang H (2013) Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 73:3451–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frescas D, Roux CM, Aygun-Sunar S, Gleiberman AS, Krasnov P, Kurnasov OV et al (2017) Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci USA 114(9):E1668–E1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Peralta F, Abreu C, Gomez-Rodriguez S, Barranco RJ, Umpierrez GE (2018) Safety and efficacy of DPP4 inhibitor and basal insulin in type 2 diabetes: an updated review and challenging clinical scenarios. Diabetes Ther 9(5):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ et al (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85:502–511

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179(4):813–827

    Article  CAS  PubMed  Google Scholar 

  • Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M et al (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4:111–120

    Article  CAS  PubMed  Google Scholar 

  • Han C, Chen T, Yang M, Li N, Liu H, Cao X (2009) Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. J Immunol 182(5):2986–2996

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of Cellular Senescence. Trends Cell Biol 28(6):436–453

    Article  CAS  PubMed  Google Scholar 

  • Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17(9):1205–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210(10):2057–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE et al (2017) Identification of senescent cell surface targetable protein DPP4. Genes Dev 31(15):1529–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KM, Noh JH, Bodogai M, Martindale JL, Pandey PR, Yang X et al (2018) SCAMP4 enhances the senescent cell secretome. Genes Dev Jul 32(13–14):909–914

    Article  CAS  Google Scholar 

  • Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBioMedicine 21:21–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9(2):81–94

    Article  CAS  PubMed  Google Scholar 

  • Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W et al (2017) Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J 50(2):pii: 1602367

    Google Scholar 

  • Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG et al (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448

    Article  CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432(7015):307–315

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R, Dipeptidyl-peptidase IV (1999) (CD26)–role in the inactivation of regulatory peptides. Regul Pept 85(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE et al (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12(3):489–498

    Article  CAS  PubMed  Google Scholar 

  • Muñoz DP, Yannone SM, Daemen A, Sun Y, Vakar-Lopez F, Kawahara M et al (2019) Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, pii: 124716

    Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Article  PubMed  CAS  Google Scholar 

  • Nacarelli T, Sell C (2017) Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol 455:83–92

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell Jun 113:703–716

    Article  CAS  Google Scholar 

  • Nelson JA, Krishnamurthy J, Menezes P, Liu Y, Hudgens MG, Sharpless NE et al (2012) Expression of p16(INK4a) as a biomarker of T-cell aging in HIV-infected patients prior to and during antiretroviral therapy. Aging Cell 11:916–918

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, Sharpless NE (2013) Coming of age: molecular drivers of aging and therapeutic opportunities. J Clin Invest 123(3):946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh JH, Kim KM, Pandey PR, Noren Hooten N, Munk R, Kundu G et al (2019) Loss of RNA-binding protein GRSF1 activates mTOR to elicit a proinflammatory transcriptional program. Nucl Acids Res 47(5):2472–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Jurk D et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8:15691

    Google Scholar 

  • Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106(40):17031–17036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovadya Y, Krizhanovsky V (2018) Strategies targeting cellular senescence. J Clin Invest 128(4):1247–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röhrborn D, Wronkowitz N, Eckel J (2015) DPP4 in Diabetes. Front Immunol 6:386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15(5):973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14(6):617–628

    Article  CAS  PubMed  Google Scholar 

  • Sagiv A, Burton DG, Moshayev Z, Vadai E, Wensveen F, Ben-Dor S et al (2016) NKG2D ligands mediate immunosurveillance of senescent cells. Aging 8(2):328–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheen AJ (2018) The safety of gliptins: updated data in 2018. Expert Opin Drug Saf 17(4):387–405

    Article  CAS  PubMed  Google Scholar 

  • Schmiedel D, Mandelboim O (2018) NKG2D ligands-critical targets for cancer immune escape and therapy. Front Immunol 9:2040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  CAS  PubMed  Google Scholar 

  • Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V et al (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511

    Article  CAS  PubMed  Google Scholar 

  • Spear P, Wu MR, Sentman ML, Sentman CL (2013) NKG2D ligands as therapeutic targets. Cancer Immun 13:8

    PubMed  PubMed Central  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428

    Article  CAS  PubMed  Google Scholar 

  • van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  • Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ et al (2012) The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11(4):722–725

    Article  CAS  PubMed  Google Scholar 

  • Wiley CD, Flynn JM, Morrissey C, Lebofsky R, Shuga J, Dong X et al (2017) Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16(5):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Wang X, Proud CG (2016) mTOR inhibitors in cancer therapy, F1000Res

    Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S et al (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB et al (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15(3):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H et al (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9(3):955–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIA IRP, NIH, and by the Chungnam National University research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Mi Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, K.M., Noh, J.H., Gorospe, M. (2020). Senolysis and Senostasis Through the Plasma Membrane. In: Muñoz-Espin, D., Demaria, M. (eds) Senolytics in Disease, Ageing and Longevity. Healthy Ageing and Longevity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44903-2_7

Download citation

Publish with us

Policies and ethics