Skip to main content

Advertisement

Log in

Immunosurveillance of senescent cells: the bright side of the senescence program

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Cellular senescence, a state of irreversible cell cycle arrest, is a robust mechanism used to mediate tumor suppression and control the tissue damage response following short-term insults. In addition, the senescence associated-secretory phenotype (SASP), one of the most profound characteristics of the senescence program, facilitates the immunosurveillance of senescent cells. The SASP includes many chemokines, cytokines and adhesion molecules that can recruit and activate distinct immune cells from both the innate and adaptive immune system such as NK cells, monocytes/macrophages and T cells. Furthermore, senescent cells can upregulate specific immune ligands on their cell surface that can mediate the recognition of these cells by specific immune cell subsets and lead to activation of the immune cells. Consequently, the activated immune cells engage explicit regulatory mechanisms to eliminate senescent cells. For example, recent work from our laboratory showed that perforin-granzyme exocytosis mediates NK-cell killing of senescent cells. Here, we summarize the current advances in our knowledge of the mechanisms underlying specific immune-mediated elimination of senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36:2–14

    Article  PubMed  CAS  Google Scholar 

  • Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O et al (2011) Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(701–721):e701–770

    Article  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  PubMed  CAS  Google Scholar 

  • Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409

    PubMed  CAS  Google Scholar 

  • Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596

    Article  PubMed  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  PubMed  CAS  Google Scholar 

  • Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365

    Article  PubMed  Google Scholar 

  • Bromley SK, Mempel TR, Luster AD (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9:970–980

    Article  PubMed  CAS  Google Scholar 

  • Burton DG (2009) Cellular senescence, ageing and disease. Age (Dordr) 31:1–9

    Article  CAS  Google Scholar 

  • Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  PubMed  CAS  Google Scholar 

  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  • Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS et al (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136

    Article  PubMed  CAS  Google Scholar 

  • Choy JC, McDonald PC, Suarez AC, Hung VH, Wilson JE, McManus BM, Granville DJ (2003) Granzyme B in atherosclerosis and transplant vascular disease: association with cell death and atherosclerotic disease severity. Mod Pathol 16:460–470

    Article  PubMed  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  PubMed  CAS  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  CAS  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  CAS  Google Scholar 

  • Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15:251–262

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137

    Article  PubMed  CAS  Google Scholar 

  • Fitzner B, Muller S, Walther M, Fischer M, Engelmann R, Muller-Hilke B, Putzer BM, Kreutzer M, Nizze H, Jaster R (2012) Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med. doi:10.1111/j.1582-4934.2012.01573.x

    PubMed  Google Scholar 

  • Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TBH, Engering A, van Kooyk Y (2002) DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 71:921–931

    PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Syrbe U (2000) T-cell trafficking into sites of inflammation. Rheumatology (Oxford) 39:696–699

    Article  CAS  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006) NKG2D and cytotoxic effector function in tumor immune surveillance. Semin Immunol 18:176–185

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • Hazeldine J, Lord JM (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. doi:10.1016/j.arr.2013.04.003

    PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  PubMed  CAS  Google Scholar 

  • Ingersoll MA, Platt AM, Potteaux S, Randolph GJ (2011) Monocyte trafficking in acute and chronic inflammation. Trends Immunol 32:470–477

    Article  PubMed  CAS  Google Scholar 

  • Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426

    PubMed  CAS  Google Scholar 

  • Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798

    Article  PubMed  CAS  Google Scholar 

  • Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  PubMed  CAS  Google Scholar 

  • Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457

    Article  PubMed  CAS  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  PubMed  CAS  Google Scholar 

  • La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4:371–379

    Article  PubMed  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  • Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153:449–460

    Article  PubMed  CAS  Google Scholar 

  • Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14:129–135

    Article  PubMed  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki H, Kuwano K, Yoshida K, Maeyama T, Yoshimi M, Fujita M, Hagimoto N, Yoshida R, Nakanishi Y (2004) The perforin mediated apoptotic pathway in lung injury and fibrosis. J Clin Pathol 57:1292–1298

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043

    PubMed  CAS  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  PubMed  CAS  Google Scholar 

  • Naylor RM, Baker DJ, van Deursen JM (2013) Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther 93:105–116

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283

    Article  PubMed  Google Scholar 

  • Pitiyage GN, Slijepcevic P, Gabrani A, Chianea YG, Lim KP, Prime SS, Tilakaratne WM, Fortune F, Parkinson EK (2011) Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J Pathol 223:604–617

    Article  PubMed  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638

    Article  PubMed  CAS  Google Scholar 

  • Rabin RL, Park MK, Liao F, Swofford R, Stephany D, Farber JM (1999) Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J Immunol 162:3840–3850

    PubMed  CAS  Google Scholar 

  • Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530

    PubMed  CAS  Google Scholar 

  • Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32:1971–1977

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  PubMed  CAS  Google Scholar 

  • Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37:653–664

    Article  PubMed  CAS  Google Scholar 

  • Semerad CL, Poursine-Laurent J, Liu F, Link DC (1999) A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 11:153–161

    Article  PubMed  CAS  Google Scholar 

  • Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17:413–423

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  PubMed  CAS  Google Scholar 

  • Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A et al (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113:3503–3511

    Article  PubMed  CAS  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  • Tseng SY, Dustin ML (2002) T-cell activation: a multidimensional signaling network. Curr Opin Cell Biol 14:575–580

    Article  PubMed  CAS  Google Scholar 

  • von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343:1020–1034

    Article  Google Scholar 

  • Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    Article  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  • Yawalkar N, Schmid S, Braathen LR, Pichler WJ (2001) Perforin and granzyme B may contribute to skin inflammation in atopic dermatitis and psoriasis. Br J Dermatol 144:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Burton for insightful comments and to other members of the Krizhanovsky lab for helpful discussions. This work was supported by grants to V. K. from European Research Council under the European Union’s FP7 (ERC grant n 309688), from Israel Science Foundation and from DKFZ-MOST program. V. K. is an incumbent of the Karl and Frances Korn Career Development Chair in Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Krizhanovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagiv, A., Krizhanovsky, V. Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14, 617–628 (2013). https://doi.org/10.1007/s10522-013-9473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9473-0

Keywords

Navigation