Skip to main content

From Discrete and Iterative Deconvolution Operators to Machine Learning for Premixed Turbulent Combustion Modeling

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion
  • 1158 Accesses

Abstract

Following the rapid and continuous progress of computing power, allowing for increasing the mesh resolution in large eddy simulation (LES), new modeling strategies appear which are based on a direct treatment of the now well resolved, but still not fully resolved scalar signals. Along this line, deconvolution or inverse filtering, either based on discrete or iterative operators, is first discussed. Recent results obtained from a direct numerical simulation (DNS) database and LES of a premixed turbulent jet flame are presented. The analysis confirms the potential of deconvolution to approximate the unclosed non-linear terms and the SGS fluxes. Then, the introduction of machine learning in turbulent combustion modeling is illustrated in the context of convolutional neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A resolution of 50 \(\upmu \)m would be necessary to fully resolve the flame (i.e., DNS) with tabulated chemistry and between 10 \(\upmu \)m and 80 \(\upmu \)m to resolve the Kolmogorov scale.

References

  1. R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll, Paradigms in turbulent combustion research. Proc. Combust. Inst 30(1), 21–42 (2005)

    Google Scholar 

  2. L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)

    Google Scholar 

  3. T. Poinsot, Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)

    MathSciNet  Google Scholar 

  4. E. Mastorakos, Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36(2), 2367–2383 (2017)

    Google Scholar 

  5. C. Locci, L. Vervisch, B. Farcy, N. Perret, Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow Turbul. Combust. 100(2), 301–340 (2018)

    Google Scholar 

  6. K.N.C. Bray, The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)

    Google Scholar 

  7. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  8. D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Google Scholar 

  9. H. Pitsch, Large Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    MathSciNet  MATH  Google Scholar 

  10. M. Lesieur, O. Métais, P. Comte, Large-Eddy Simulations of Turbulence (Cambridge University Press, Cambridge UK, 2005)

    MATH  Google Scholar 

  11. Z. Nikolaou, L. Vervisch, A priori assessment of an iterative deconvolution method for les sub-grid scale variance modelling. Flow Turbul. Combust. 101(1), 33–53 (2018)

    Google Scholar 

  12. F. Katopodes, R.L. Street, M. Xue, J.H. Ferziger, Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62(7), 2058–2077 (2004)

    Google Scholar 

  13. P. Domingo, L. Vervisch, Large Eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst. 35(2), 1349–1357 (2015)

    Google Scholar 

  14. Q. Wang, M. Ihme, Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)

    Google Scholar 

  15. C. Mehl, J. Idier, B. Fiorina, Evaluation of deconvolution modelling applied to numerical combustion. Combust. Theory Model. 22(1), 38–70 (2018)

    MathSciNet  Google Scholar 

  16. A.W. Vreman, R.J.M. Bastiaans, B.J. Geurts, A similarity sub-grid model for premixed turbulent combustion. Flow Turbul. Combust. 82(2), 233–248 (2009)

    MATH  Google Scholar 

  17. Y.-C. Chen, N. Peters, G.A. Schneemann, N. Wruck, U. Renz, M.S. Mansour, The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107(3), 223–244 (1996)

    Google Scholar 

  18. L. Bouheraoua, P. Domingo, G. Ribert, Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base. Combust. Flame 179, 199–218 (2017)

    Google Scholar 

  19. O. Gicquel, N. Darabiha, D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Google Scholar 

  20. J.A. van Oijen, F.A. Lammers, L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Google Scholar 

  21. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, Technical report (1999). http://www.me.berkeley.edu/gri-mech/

  22. G. Godel, P. Domingo, L. Vervisch, Tabulation of nox chemistry for large-eddy simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2009)

    Google Scholar 

  23. F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)

    MathSciNet  MATH  Google Scholar 

  24. G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys 227(10), 5105–5143 (2008)

    MathSciNet  MATH  Google Scholar 

  25. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2002)

    MATH  Google Scholar 

  26. P. Domingo, L. Vervisch, Dns and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling. Combust. Flame 177, 109–122 (2017)

    Google Scholar 

  27. P.H. Van Cittert, Zum einfluss der spaltbreite auf die intensitätverteilung in spektralinien. II, Z. Physik 69, 298–308 (1931)

    Google Scholar 

  28. P.A. Jansson, in Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), pp. 67–134

    Google Scholar 

  29. Z.M. Nikolaou, N. Swaminathan, Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Combust. Sci. Tech. 187, 1759–1789 (2015)

    Google Scholar 

  30. R.S. Cant, Senga2 user guide. cued/a?thermo/tr67. Technical report (2012)

    Google Scholar 

  31. Z. Nikolaou, R.S. Cant, L. Vervisch, Scalar flux modelling in turbulent flames using iterative deconvolution. Phys. Rev. Fluids. 3(4), 043201 (2018)

    Google Scholar 

  32. R.A. Clark, Evaluation of sub-grid scalar models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1) (1979)

    MATH  Google Scholar 

  33. D. Veynante, A. Trouvé, K.N.C. Bray, T. Mantel, Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    MATH  Google Scholar 

  34. Z.M. Nikolaou, Y. Minamoto, L. Vervisch, Unresolved stress tensor modeling in turbulent premixed v-flames using iterative deconvolution: An a priori assessment. Phys. Rev. Fluids 4, 063202 (2019)

    Google Scholar 

  35. L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst. 35(2), 1295–1303 (2015)

    Google Scholar 

  36. L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch, Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame. Flow Turbul. Combust. 96(2), 535–546 (2016)

    Google Scholar 

  37. P. Domingo, L. Vervisch, D. Veynante, Large-Eddy Simulation of a lifted methane-air jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Google Scholar 

  38. A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids. 16(10), 3670–3681 (2004)

    MATH  Google Scholar 

  39. A. Seltz, P. Domingo, L. Vervisch, Z. Nikolaou, Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks. Combust. Flame 210, 71–82 (2019)

    Google Scholar 

  40. Z. Nikolaou, C. Chrysostomou, L. Vervisch, R.S. Cant, Progress variable variance and filtered rate modelling using convolutional neural networks and flamelet methods. Flow Turbul. Combust. (2019). https://doi.org/10.1007/s10494-019-00028-w

    Google Scholar 

  41. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  42. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Google Scholar 

  43. P.-T. de Boer, D.P. Kroese, S.S. Mannor, R.Y. Rubinstein, A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    MathSciNet  MATH  Google Scholar 

  44. D.P. Kingma, J.L. Ba, ADAM: a method for stochastic optimization (2017). https://arxiv.org/pdf/1412.6980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vervisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domingo, P., Nikolaou, Z., Seltz, A., Vervisch, L. (2020). From Discrete and Iterative Deconvolution Operators to Machine Learning for Premixed Turbulent Combustion Modeling. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_11

Download citation

Publish with us

Policies and ethics