Skip to main content

How to Use a “Virtual Field” to Evaluate and Design Integrated Weed Management Strategies at Different Spatial and Temporal Scales

  • Chapter
  • First Online:
Decision Support Systems for Weed Management
  • 362 Accesses

Abstract

Switching from intensive herbicide-based to agroecological weed management needs models to explore the vast range of possible combinations of cropping techniques, to assess long-term effects and weed (dis)services. This chapter presents the mechanistic FlorSys model, a “virtual field” simulating daily weed and crop growth and reproduction over the years, on which arable cropping systems can be experimented in temperate climates. The model inputs include a detailed description of the cropping system, soil characteristics, weather and the regional weed species pool. A detailed life cycle predicts daily state variables describing weeds, crops and soil conditions depending on inputs, with a 3D individual-based representation of the multispecies crop–weed canopy. Effects on a given plant or seed depend on weather and soil conditions, management operations, biophysical environment as well as species, plant morphology and stage. To simplify the addition of new species, difficult-to-measure model parameters are estimated with functional relationships from easily measured species traits, trait databases and expert opinion. To simplify the comparison of cropping systems, the detailed daily and 3D outputs are translated into indicators assessing crop production and weed (dis)services. A series of case studies illustrates how the model is used to (1) optimise individual cropping techniques with frequency analyses, (2) run multicriteria evaluations of existing and prospective cropping systems at the field and landscape scales, (3) identify the cropping techniques and species traits that drive crop production and weed (dis)services and (4) design innovative cropping systems and to promote integrated weed management in participatory workshops with farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baux A, Colbach N, Pellet D (2011) Crop management for optimal low-linolenic rapeseed oil production—field experiments and modelling. Eur J Agron 35:144–153

    Article  Google Scholar 

  • Bergez JE, Colbach N, Crespo O, Garcia F, Jeuffroy MH, Justes E, Loyce C, Munier-Jolain N, Sadok W (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9

    Article  Google Scholar 

  • Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149

    Article  Google Scholar 

  • Bürger J, Granger S, Guyot SHM, Messéan A, Colbach N (2015) Simulation study of the impact of changed cropping practices in conventional and GM maize on weeds and associated biodiversity. Agr Syst 137:51–63. https://doi.org/10.1016/j.agsy.2015.03.009

    Article  Google Scholar 

  • Colas F (2018) Co-développement d’un modèle d’aide à la décision pour la gestion intégrée de la flore adventice. Métamodélisation et analyse de sensibilité d’un modèle mécaniste complexe (FlorSys) des effets des systèmes de culture sur les services et disservices écosystémiques de la flore adventice. PhD Thesis, Univ. Bourgogne Franche-Comté, Dijon, France

    Google Scholar 

  • Colas F, Cordeau S, Granger S, Jeuffroy M-H, Pointurier O, Queyrel W, Rodriguez A, Villerd J, Colbach N (2020) Co-development of a decision support system fo integrated weed managment: contribution from future users. Eur J Agron 114:in press. https://doi.org/10.1016/j.eja.2020.126010

  • Colbach N (2010) Modelling cropping system effects on crop pest dynamics: how to compromise between process analysis and decision aid. Plant Sci 179:1–13

    Article  CAS  Google Scholar 

  • Colbach N, Cordeau S (2018a) Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. Eur J Agron 94:67–78. https://doi.org/10.1016/j.eja.2017.12.008

    Article  Google Scholar 

  • Colbach N, Cordeau S (2018b) Réduire les herbicides sans perte de rendement. Phytoma 717:8–12

    Google Scholar 

  • Colbach N, Dürr C, Roger-Estrade J, Caneill J (2005) How to model the effects of farming practices on weed emergence. Weed Res 45:2–17

    Article  Google Scholar 

  • Colbach N, Schneider A, Ballot R, Vivier C (2010) Diversifying cereal-based rotations to improve weed control. Evaluation with the ALOMYSYS model quantifying the effect of cropping systems on a grass weed. OCL 17:292–300

    Article  Google Scholar 

  • Colbach N, Biju-Duval L, Gardarin A, Granger S, Guyot SHM, Mézière D, Munier-Jolain NM, Petit S (2014a) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555. https://doi.org/10.1111/wre.12112

    Article  Google Scholar 

  • Colbach N, Busset H, Roger-Estrade J, Caneill J (2014b) Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res 138:1–8

    Article  Google Scholar 

  • Colbach N, Collard A, Guyot SHM, Mézière D, Munier-Jolain NM (2014c) Assessing innovative sowing patterns for integrated weed management with a 3D crop: weed competition model. Eur J Agron 53:74–89. https://doi.org/10.1016/j.eja.2013.09.019

    Article  Google Scholar 

  • Colbach N, Granger S, Guyot SHM, Mézière D (2014d) A trait-based approach to explain weed species response to agricultural practices in a simulation study with a cropping system model. Agric Ecosyst Environ 183:197–204. https://doi.org/10.1016/j.agee.2013.11.013

    Article  Google Scholar 

  • Colbach N, Bertrand M, Busset H, Colas F, Dugué F, Farcy P, Fried G, Granger S, Meunier D, Munier-Jolain NM, Noilhan C, Strbik F, Gardarin A (2016) Uncertainty analysis and evaluation of a complex, multi-specific weed dynamics model with diverse and incomplete data sets. Environ Model Software 86:184–203. https://doi.org/10.1016/j.envsoft.2016.09.020

    Article  Google Scholar 

  • Colbach N, Bockstaller C, Colas F, Gibot-Leclerc S, Moreau D, Pointurier O, Villerd J (2017a) Assessing broomrape risk due to weeds in cropping systems with an indicator based on a simulation model. Ecol Indic 82:280–292. https://doi.org/10.1016/j.ecolind.2017.05.070

    Article  Google Scholar 

  • Colbach N, Darmency H, Fernier A, Granger S, Le Corre V, Messéan A (2017b) Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Effect on weed impacts on crop production and biodiversity. Environ Sci Pollut Res 24:13121–13135. https://doi.org/10.1007/s11356-017-8591-7

    Article  CAS  Google Scholar 

  • Colbach N, Fernier A, Le Corre V, Messéan A, Darmency H (2017c) Simulating changes in cropping practices in conventional and glyphosate-resistant maize. I. Effects on weeds. Environ Sci Pollut Res 24:11582–11600. https://doi.org/10.1007/s11356-017-8591-7

    Article  CAS  Google Scholar 

  • Colbach N, Cordeau S, Garrido A, Granger S, Laughlin D, Ricci B, Thomson F, Messéan A (2018) Landsharing vs landsparing: how to reconcile crop production and biodiversity? A simulation study focusing on weed impacts. Agric Ecosyst Environ 251:203–217. https://doi.org/10.1016/j.agee.2017.09.005

    Article  Google Scholar 

  • Colbach N, Gardarin A, Moreau D (2019) The response of weed and crop species to shading: which parameters explain weed impacts on crop production? Field Crop Res 238:45–55

    Article  Google Scholar 

  • Colbach N, Chauvel B, Messéan A, Villerd J, Bockstaller C (2020) Assessing services and dysservices related to weed pollen. A simulation study. Ecol Indicators. https://doi.org/10.1016/j.ecolind.2020.106635

  • Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France. Agric Ecosyst Environ 128(1–2):68–76. https://doi.org/10.1016/j.agee.2008.05.003

    Article  Google Scholar 

  • Gardarin A (2008) Modélisation des effets des systèmes de culture sur la levée des adventices à partir de relations fonctionnelles utilisant les traits des espèces. PhD Thesis, Université de Bourgogne, Dijon, France

    Google Scholar 

  • Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Model 240:123–138. https://doi.org/10.1016/j.ecolmodel.2012.05.004

    Article  Google Scholar 

  • Gardarin A, Coste F, Wagner M-H, Dürr C (2016) How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. Seed Sci Res 26(4):317–331. https://doi.org/10.1017/s0960258516000210

    Article  CAS  Google Scholar 

  • Hossard L, Jeuffroy MH, Pelzer E, Pinochet X, Souchere V (2013) A participatory approach to design spatial scenarios of cropping systems and assess their effects on phoma stem canker management at a regional scale. Environ Model Softw 48:17–26. https://doi.org/10.1016/j.envsoft.2013.05.014

    Article  Google Scholar 

  • Lewis J (1973) Longevity of crop and weed seeds: survival after 20 years in soil. Weed Res 13(2):179–191. https://doi.org/10.1111/j.1365-3180.1973.tb01262.x

    Article  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  Google Scholar 

  • Liebman M, Gallandt ER (1997) Many little hammers: ecological management of crop-weed interactions. In: Jackson LE (ed) Ecology in agriculture. Academic Press, New York, pp 291–343. https://doi.org/10.1016/B978-012378260-1/50010-5

    Chapter  Google Scholar 

  • Maillot T, Mion M, Vioix J-B, Colbach N (2019) Conception de systèmes de cultures par algorithmes d’optimisation. In: Colbach N, Angevin F, Bockstaller C, Chauvel B, Denieul C, Moreau D, Omon B, Pellet D, Rodriguez A, Trannoy L, Volan S, Vuillemin F (eds.). Gestion des adventices dans un contexte de changement - Séminaire CoSAC Paris, France, 32–35

    Google Scholar 

  • Martin G, Felten B, Duru M (2011) Forage rummy: a game to support the participatory design of adapted livestock systems. Environ Model Softw 26:1442–1453

    Article  Google Scholar 

  • Meylan L, Merot A, Gary C, Rapidel B (2013) Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: the case of erosion control in coffee-based agroforestry systems in Costa Rica. Agr Syst 118:52–64

    Article  Google Scholar 

  • Meynard JM, Charrier F, Fares M, Le Bail M, Magrini MB, Charlier A, Messean A (2018) Socio-technical lock-in hinders crop diversification in France. Agron Sustain Dev 38(5):13. https://doi.org/10.1007/s13593-018-0535-1

    Article  Google Scholar 

  • Mézière D, Petit S, Granger S, Biju-Duval L, Colbach N (2015) Developing a set of simulation-based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecol Indic 48:157–170. https://doi.org/10.1016/j.ecolind.2014.07.028

    Article  Google Scholar 

  • Moreau D, Pointurier O, Nicolardot B, Villerd J, Colbach N (2020) In which cropping systems can residual weeds reduce nitrate leaching and soil erosion? Eur J Agron, in press

    Google Scholar 

  • Moss SR, Clarke JH (1994) Guidelines for the prevention and control of herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Crop Prot 13:230–234

    Article  Google Scholar 

  • Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies. Model structure and evaluation. Ecol Model 250:101–110. https://doi.org/10.1016/j.ecolmodel.2012.10.023

    Article  Google Scholar 

  • Munier-Jolain NM, Collard A, Busset H, Guyot SHM, Colbach N (2014) Modelling the morphological plasticity of weeds in multi-specific canopies. Field Crop Res 155:90–98. https://doi.org/10.1016/j.fcr.2013.09.018

    Article  Google Scholar 

  • Pasquier C, Angevin F (2017) Freins et leviers à la réduction de l’usage d’herbicides en grande culture. Paper presented at the Gestion des adventices dans un contexte de changement: Connaissances, méthodes et outils pour l’élaboration de stratégies innovantes, Séminaire de restitution à mi-parcours du projet de recherche ANR CoSAC, Paris, France

    Google Scholar 

  • Petit S, Alignier A, Colbach N, Joannon A, Le Coeur D, Thenail C (2013) Weed dispersal by farming at various spatial scales. A review. Agron Sustain Dev 33:205–217

    Article  Google Scholar 

  • Pointurier O, Moreau D, Colbach N (submitted) Reconciling a 3D individual-based root architecture model with large-scale and multi-annual simulations. Case study with a weed dynamics model. Ecol Modelling

    Google Scholar 

  • Sausse C, Le Bail M, Lecroart B, Remy B, Messean A (2013) How to manage the coexistence between genetically modified and conventional crops in grain and oilseed collection areas? Elaboration of scenarios using role playing games. Land Use Policy 30(1):719–729. https://doi.org/10.1016/j.landusepol.2012.05.018

    Article  Google Scholar 

  • Sester M, Angevin F, Choimet C, Messéan A (2006) Coexistence of genetically-modified and non-genetically-modified beet crops in France and Germany: the case of tolerance to a non-selective herbicide. In: Messean A, Angevin F, Gómez-Barbero M, Menrad K, Rodríguez-Cerezo E (eds) New case studies on the coexistence of GM and non-GM crops in European agriculture. Joint Research Center of the European Commission, Technical Report Series. EUR 22102 EN, Sevilla, Spain

    Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99(6):1299–1307. https://doi.org/10.1111/j.1365-2745.2011.01867.x

    Article  Google Scholar 

  • Wilson RS, Tucker MA, Hooker NH, LeJeune JT, Doohan D (2008) Perceptions and beliefs about weed management: perspectives of Ohio grain and produce farmers. Weed Technol 22(2):339–350. https://doi.org/10.1614/WT-07-143.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Colbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colbach, N. (2020). How to Use a “Virtual Field” to Evaluate and Design Integrated Weed Management Strategies at Different Spatial and Temporal Scales. In: Chantre, G., González-Andújar, J. (eds) Decision Support Systems for Weed Management. Springer, Cham. https://doi.org/10.1007/978-3-030-44402-0_11

Download citation

Publish with us

Policies and ethics