Skip to main content
Log in

Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FlorSys model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Numbers between brackets, e.g. [A1], refer to equations listed in Appendix A.

  2. Numbers between brackets, e.g. [B1], refer to equations listed in ]Appendix B.

References

  • Bagavathiannan MV, Norsworthy JK, Smith KL, Neve P (2013) Modeling the evolution of glyphosate resistance in barnyardgrass (Echinochloa crus-galli) in cotton-based production systems of the Midsouthern United States. Weed Technol 27:475–487. doi:10.1614/wt-d-13-00013.1

    Article  CAS  Google Scholar 

  • Beckie HJ (2009) Herbicide resistance in weeds: influence of farm practices. Prairie Soils & Crops Journal 2:17–23

    Google Scholar 

  • Beckie HJ, Leeson JY, Thomas AG, Hall LM, Brenzil CA (2008) Risk assessment of weed resistance in the Canadian prairies. Weed Technol 22:741–746. doi:10.1614/wt-08-071.1

    Article  Google Scholar 

  • Blanco-Moreno JM, Chamorro L, Masalles RM, Recasens J, Sans FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375–387

    Article  Google Scholar 

  • Boerboom CM (1999) Non chemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol 13:636–642

    Google Scholar 

  • Bonny S (2016) Genetically modified herbicide-tolerant crops. Weeds, and Herbicides: Overview and Impact Environmental Management 57:31–48. doi:10.1007/s00267-015-0589-7

    Google Scholar 

  • Brabham CB, Gerber CK, Johnson WG (2011) Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in the presence and absence of glyphosate. Weed Sci 59:506–511. doi:10.1614/WS-D-11-00050.1

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH (1994) Influence of physico-chemical properties on uptake and loss of pesticides and adjuvants from the leaf surface. Paper presented at the Ernst Schering Foundation Workshop 12: interactions between adjuvants, agrochemicals and target organisms

  • Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2009) GM crops: global socio-economic and environmental impacts 1996–2007

  • Bürger J, Granger S, Guyot SHM, Messéan A, Colbach N (2015) Simulation study of the impact of changed cropping practices in conventional and GM maize on weeds and associated biodiversity. Agric Syst 137:51–63. doi:10.1016/j.agsy.2015.03.009

    Article  Google Scholar 

  • Cavan G, Cussans J, Moss SR (2000) Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides. Weed Res 40:561–568

    Article  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658. doi:10.2134/jeq2005.0378

    Article  CAS  Google Scholar 

  • Chauvel B, Guillemin JP, Colbach N (2009) Evolution of a herbicide-resistant population of Alopecurus myosuroides Huds. In a long-term cropping system experiment. Crop Prot 28:343–349

    Article  CAS  Google Scholar 

  • Chen JC, Huang HJ, Wei SH, Zhang CX, Huang ZF (2015) Characterization of glyphosate-resistant goosegrass (Eleusine indica) populations in China. J Integr Agric 14:919–925. doi:10.1016/s2095-3119(14)60910-2

    Article  CAS  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package. I. One-table method. R News 4(4):5–10

    Google Scholar 

  • Colbach N et al (2016a) Uncertainty analysis and evaluation of a complex, multi-specific weed dynamics model with diverse and incomplete data sets. Environ Model Softw 86:184–203. doi:10.1016/j.envsoft.2016.09.020

    Article  Google Scholar 

  • Colbach N et al (2014a) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555. doi:10.1111/wre.12112

    Article  Google Scholar 

  • Colbach N, Busset H, Roger-Estrade J, Caneill J (2014b) Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res 138:1–8

    Article  Google Scholar 

  • Colbach N, Chauvel B, Darmency H, Délye C, Le Corre V (2016b) Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Manag Sci 72:1910–1925. doi:10.1002/ps.4230

    Article  CAS  Google Scholar 

  • Colbach N, Collard A, Guyot SHM, Mézière D, Munier-Jolain NM (2014c) Assessing innovative sowing patterns for integrated weed management with a 3D crop: weed competition model. Eur J Agron 53:74–89. doi:10.1016/j.eja.2013.09.019

    Article  Google Scholar 

  • Colbach N, Granger S, Guyot SHM, Mézière D (2014d) A trait-based approach to explain weed species response to agricultural practices in a simulation study with a cropping system model. Agric Ecosyst Environ 183:197–204. doi:10.1016/j.agee.2013.11.013

    Article  Google Scholar 

  • Colbach N, Roger-Estrade J, Chauvel B, Caneill J (2000) Modelling vertical and lateral seed bank movements during moulboard ploughing. Eur J Agron 13:111–124

    Article  Google Scholar 

  • Colbach N, Sache I (2001) Blackgrass (Alopecurus myosuroides Huds.) seed dispersal from a single plant and its consequences on weed infestation. Ecol Modelling 139:201–219

    Article  Google Scholar 

  • Collavo A, Sattin M (2014) First glyphosate-resistant Lolium spp. biotypes found in a European annual arable cropping system also affected by ACCase and ALS resistance. Weed Res 54:325–334. doi:10.1111/wre.12082

    Article  CAS  Google Scholar 

  • Costa J, Fernandez J, Gonzalez J, Novillo C, Rodriguez J J, Valera A (2001) Easier conservation agriculture with Roundup Ready varieties. In: Actas Congreso 2001 Sociedad Espanola de Malherbologia, Leon Spain, 20, 21 y 22 de noviembre de 2001., 2001. Sociedad Espanola de Malherbologia (Spanish Weed Science Society), Madrid Spain, pp 305–309

  • de Mol F, von Redwitz C, Gerowitt B (2015) Weed species composition of maize fields in Germany is influenced by site and crop sequence. Weed Res 55:574–585. doi:10.1111/wre.12169

    Article  Google Scholar 

  • Debban CL, Okum S, Pieper KE, Wilson A, Baucom RS (2015) An examination of fitness costs of glyphosate resistance in the common morning glory, Ipomoea purpurea. Ecol Evol 5:5284–5294. doi:10.1002/ece3.1776

    Article  Google Scholar 

  • Delye C, Clement JAJ, Pernin F, Chauvel B, Le Corre V (2010) High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic and Applied Ecology 11:504–512. doi:10.1016/j.baae.2010.06.008

    Article  Google Scholar 

  • Délye C et al (2010) Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides Huds. (black-grass). New Phytol 186:1005–1017

    Article  Google Scholar 

  • Dewar AM (2009) Weed control in glyphosate-tolerant maize in Europe. Pest Manag Sci 65:1047–1058. doi:10.1002/ps.1806

    Article  CAS  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  Google Scholar 

  • Eberlein CV, Al-Khatib K, Guttieri MJ, Fuerst EP (1992) Distribution and characteristics of triazine-resistant Powell amaranth (Amaranthus powellii) in Idaho. Weed Sci 40:507–512

    CAS  Google Scholar 

  • Fausti SW, Sluis, Evd, Qasmi BA, Lundgren J (2014) The effect of biotechnology and biofuels on U.S. Corn Belt Cropping Systems: updated version Economics Staff Paper—Department of Economics, South Dakota State University:ii + 23 pp

  • Fried G, Kazakou E, Gaba S (2012) Trajectories of weed communities explained by traits associated with species’ response to management practices. Agric Ecosyst Environ 158:147–155. doi:10.1016/j.agee.2012.06.005

    Article  Google Scholar 

  • Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France. Agric Ecosyst Environ 128:68–76

    Article  Google Scholar 

  • Friedman J, Barrett SCH (2008) High outcrossing in the annual colonizing species Ambrosia artemisiifolia (Asteraceae). Ann Bot 101:1303–1309. doi:10.1093/aob/mcn039

    Article  Google Scholar 

  • Friesen LJS, Ferguson GM, Hall JC (2000) Management strategies for attenuating herbicide resistance: untoward consequences of their promotion. Crop Prot 19:891–895. doi:10.1016/S0261-2194(00)00116-2

    Article  Google Scholar 

  • Frisvold GB, Mitchell PD, Hurley TM (2009) Special issue: herbicide resistant crops—diffusion, benefits, pricing, and resistance management. AgBioforum 12:244–381

    Google Scholar 

  • Gage KL, Gibson DJ, Young BG, Young JM, Matthews JL, Weller SC, Wilson RG (2015) Occurrence of an herbicide-resistant plant trait in agricultural field margins. Ecol Evol 5:4161–4173. doi:10.1002/ece3.1667

    Article  Google Scholar 

  • Gaines T, Preston C, Byrne P, Henry WB, Westra P (2006) Adventitious presence of herbicide resistant wheat in certified and farm-saved seed lots. Crop Sci 47:751–754

    Article  Google Scholar 

  • Gardarin A, Colbach N (2015) How much of seed dormancy in weeds can be explained by seed traits? Weed Res 55:14–25. doi:10.1111/wre.12121

    Article  Google Scholar 

  • Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Modelling 240:123–138. doi:10.1016/j.ecolmodel.2012.05.004

    Article  Google Scholar 

  • Gardarin A, Dürr C, Mannino MR, Busset H, Colbach N (2010a) Seed mortality in the soil is related to the seed coat thickness. Seed Sci Res 20:243–256

    Article  Google Scholar 

  • Gardarin A, Guillemin JP, Munier-Jolain NM, Colbach N (2010b) Estimation of key parameters for weed population dynamics models: base temperature and base water potential for germination. Eur J Agron 32:162–168

    Article  Google Scholar 

  • Giacomini D, Westra P, Ward SM (2014) Impact of genetic background in fitness cost studies: an example from glyphosate-resistant Palmer amaranth. Weed Sci 62:29–37. doi:10.1614/ws-d-13-00066.1

    Article  CAS  Google Scholar 

  • Glettner CE, Stoltenberg DE (2015) Noncompetitive growth and fecundity of Wisconsin giant ragweed resistant to glyphosate. Weed Sci 63:273–281. doi:10.1614/ws-d-14-00040.1

    Article  Google Scholar 

  • Gressel J, Segel LA (1990) Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol 4:186–198

    Google Scholar 

  • Gulden RH, Sikkema PH, Hamill AS, Tardif FJ, Swanton CJ (2010) Glyphosate-resistant cropping systems in Ontario: multivariate and nominal trait-based weed community structure. Weed Sci 58:278–288. doi:10.1614/ws-d-09-00089.1

    Article  CAS  Google Scholar 

  • Heap (2010) Weedscience. www.weedscience.com. Accessed 08/07/2014

  • Heap I (2016) The international survey of herbicide resistant weeds. Available www.weedscience.com. Internet

  • Hoan Nguyen T, Malone J, Boutsalis P, Preston C (2012) Glyphosate resistance in barnyard grass ( Echinochloa colona) developing solutions to evolving weed problems 18th Australasian Weeds Conference, Melbourne, Victoria, Australia, 8–11 October 2012:237–240

  • Hutchinson I, Colosi J, Lewin RA (1984) The biology of Canadian weeds. 63. Sonchus asper (L.) hill and Sonchus oleraceus L. Can J Plant Sci 64:731–744

    Article  Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: 2013. http://www.isaaa.org/resources/publications/briefs/46/default.asp. Accessed 26/09/2014

  • Jasieniuk M, Brule-Babel AL, Morrison IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176–193

    CAS  Google Scholar 

  • Kim DS, Marshall EJP, Brain P, Caseley JC (2011) Effects of crop canopy structure on herbicide deposition and performance Weed Res:in press

  • Klotz S, Kühn I, Durka W (2002) BIOFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland http://www2.ufz.de/biolflor/index.jsp

  • Lievin J, Waller F, Duroueix F, BONIN L, Quillot E, Rodriquez A (2013) R-sim: un outil web qui évalue le risque de développement de résistances aux herbicides. Paper presented at the AFPP—22e Conférence du COLUMA, Journées internationales sur la lutte contre les mauvaises herbes, Dijon France, 10–12 Décembre 2013

  • Llewellyn RS, D’Emden FH, Owen MJ, Powles SB (2009) Herbicide resistance in rigid ryegrass (Lolium rigidum) has not led to higher weed densities in Western Australian cropping fields. Weed Sci 57:61–65

    Article  CAS  Google Scholar 

  • Llewellyn RS, Powles SB (2001) High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt ofWestern Australia. Weed Technol 15:242–248

    Article  CAS  Google Scholar 

  • Lorraine-Colwill DF, Powles SB, Hawkes TR, Preston C (2001) Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor Appl Genet 102:545–550. doi:10.1007/s001220051680

    Article  Google Scholar 

  • Mamarot J, Rodriguez A (2003) Sensibilité des mauvaises herbes aux herbicides en grandes cultures. ACTA, Paris

    Google Scholar 

  • Maun MA, Barrett SCH (1986) The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Can J Plant Sci 66:739–759

    Article  Google Scholar 

  • Maxwell BD, Roush ML, Radosevich SR (1990) Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol 4:2–13

    Google Scholar 

  • Meissle M et al (2010) Pests, pesticide use and alternative options in European maize production: current status and future prospects. J Appl Entomol 134:357–375. doi:10.1111/j.1439-0418.2009.01491.x

    Article  Google Scholar 

  • Meynard J-M et al (2013) Freins et leviers à la diversification des cultures : étude au niveau des exploitations agricoles et des filières OCL—Oléagineux. Corps Gras Lipides 20:4–10. doi:10.1051/ocl/2013007

    Google Scholar 

  • Moss SR, Clarke JH (1994) Guidelines for the prevention and control of herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Crop Prot 13:230–234

    Article  Google Scholar 

  • Moss SR, Perryman SAM, Tatnell LV (2007) Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Technol 21:300–309. doi:10.1614/wt-06-087.1

    Article  CAS  Google Scholar 

  • Moss SR, Tatnell LV, Hull R, Clarke JH, Wynn S, Marshall R (2010) Integrated management of herbicide resistance HGCA Project Report:xvii +115 pp

  • Muller-Schärer H, Fischer M (2001) Genetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size. Mol Ecol 10:17–28

    Article  Google Scholar 

  • Munier-Jolain NM, Collard A, Busset H, SHM G, Colbach N (2014) Modelling the morphological plasticity of weeds in multi-specific canopies. Field Crop Res 155:90–98. doi:10.1016/j.fcr.2013.09.018

    Article  Google Scholar 

  • Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies: model structure and evaluation. Ecol Modelling 250:101–110. doi:10.1016/j.ecolmodel.2012.10.023

    Article  Google Scholar 

  • Nandula VK, Ray JD, Ribeiro DN, Pan Z, Reddy KN (2013) Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci 61:374–383. doi:10.1614/ws-d-12-00155.1

    Article  CAS  Google Scholar 

  • Naylor REL (1972) Biological flora of the British isles. Alopecurus myosuroides Huds. J Ecol 60:611–622

    Article  Google Scholar 

  • Neve P (2007) Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Res 47:365–369. doi:10.1111/j.1365-3180.2007.00581.x

    Article  Google Scholar 

  • Neve P, Busi R, Renton M, Vila-Aiub MM (2014) Expanding the eco-evolutionary context of herbicide resistance research. Pest Manag Sci 70:1385–1393. doi:10.1002/ps.3757

    Article  CAS  Google Scholar 

  • Neve P, Diggle AJ, Smith FP, Powles SB (2003) Simulating evolution of glyphosate resistance in Lolium rigidum I: population biology of a rare resistance trait. Weed Res 43:404–417

    Article  Google Scholar 

  • Norsworthy JK (2008) Effect of tillage intensity and herbicide programs on changes in weed species density and composition in the southeastern coastal plains of the United States. Crop Prot 27:151–160. doi:10.1016/j.cropro.2007.04.019

    Article  CAS  Google Scholar 

  • Okada M et al (2015) Evolution and spread of glyphosate resistance in Conyza bonariensis in California and a comparison with closely related Conyza canadensis. Weed Res 55:173–184. doi:10.1111/wre.12131

    Article  CAS  Google Scholar 

  • Pannell DJ, Stewart V, Bennett A, Monjardino M, Schmidt C, Powles SB (2004) RIM: a bioeconomic model for integrated weed management of Lolium rigidum in Western Australia. Agric Syst 79:305–325

    Article  Google Scholar 

  • Pedersen BP, Neve P, Andreasen C, Powles SB (2007) Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along a competition gradient. Basic Appl Ecol 8:258–268. doi:10.1016/j.baae.2006.01.002

    Article  Google Scholar 

  • Powles SB (2008) Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks on Pest Management 19:256–259. doi:10.1564/19dec07

    Article  Google Scholar 

  • Preston C, Powles SB (2002) Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity 88:8–13

    Article  CAS  Google Scholar 

  • Preston C, Wakelin AM (2008) Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag Sci 64:372–376. doi:10.1002/ps.1489

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Renton M (2013) Shifting focus from the population to the individual as a way forward in understanding, predicting and managing the complexities of evolution of resistance to pesticides. Pest Manag Sci 69:171–175. doi:10.1002/ps.3341

    Article  CAS  Google Scholar 

  • Renton M, Diggle A, Manalil S, Powles S (2011) Does cutting herbicide rates threaten the sustainability of weed management in cropping systems? J Theor Biol 283:14–27

    Article  Google Scholar 

  • Renton M, Flower KC (2015) Occasional mouldboard ploughing slows evolution of resistance and reduces long-term weed populations in no-till systems. Agric Syst 139:66–75. doi:10.1016/j.agsy.2015.06.005

    Article  Google Scholar 

  • Rigitano RLO, Bromilow RH, Briggs GG, Chamberlain K (1987) Phloem translocation of weak acids in Ricinus communis. Pestic Sci 19:113–133

    Article  CAS  Google Scholar 

  • Rutherford DW, Chiou CT, Kile DE (1992) Influence of soil organic matter composition on the partition of organic compounds. Environmental Science & Technology 26:336–340

    Article  CAS  Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377. doi:10.1002/ps.3743

    Article  CAS  Google Scholar 

  • Service RF (2013) What happens when weed killers stop killing? Science 341:1329. doi:10.1126/science.341.6152.1329

    Article  Google Scholar 

  • Sester M, Dürr C, Darmency H, Colbach N (2007) Modelling the effects of cropping systems on the seed bank dynamics and emergence of weed beet. Ecol Modelling 204:47–58

    Article  Google Scholar 

  • Shaner DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320–326

    Article  CAS  Google Scholar 

  • Shaner DL, Lindenmeyer RB, Ostlie MH (2012) What have the mechanisms of resistance to glyphosate taught us? Pest Manag Sci 68:3–9. doi:10.1002/ps.2261

    Article  CAS  Google Scholar 

  • Sharma MP, Vanden Born WH (1978) The biology of Canadian weeds. 27. Avena fatua L. Can J Plant Sci 58:141–157

    Article  CAS  Google Scholar 

  • Thompson K, Ceriani RM, Bakker JP, Bekker RM (2003) Are seed dormancy and persistence in soil related? Seed Sci Res 13:97–100

    Article  Google Scholar 

  • Tomlin C (2006) The pesticide manual, 14th edn. British Crop Protection Council, Farnham

    Google Scholar 

  • Tonkin JHB (1987) Seed impurities in samples of cereal seed and feed grain Aspects of Applied Biology:473–482

  • Travlos IS, Chachalis D (2013) Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane. Conyza bonariensis J Pest Sci 86:345–351. doi:10.1007/s10340-012-0446-x

  • Trigo EJ, Cap EJ (2003) The impact of the introduction of transgenic crops in Argentinean agriculture. AgBioforum 6:87–94

    Google Scholar 

  • Vencill WK et al (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60:2–30. doi:10.1614/ws-d-11-00206.1

    Article  CAS  Google Scholar 

  • Vila-Aiub MM, Goh SS, Gaines TA, Han HP, Busi R, Yu Q, Powles SB (2014) No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta 239:793–801. doi:10.1007/s00425-013-2022-x

    Article  CAS  Google Scholar 

  • Wakelin AM, Lorraine-Colwill DF, Preston C (2004) Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res 44:453–459. doi:10.1111/j.1365-3180.2004.00421.x

    Article  CAS  Google Scholar 

  • Wakelin AM, Preston C (2006) The cost of glyphosate resistance: is there a fitness penalty associated with glyphosate resistance in annual ryegrass? 15th Australian Weeds Conference, Papers and Proceedings, Adelaide, South Australia, 24–28 September 2006: managing weeds in a changing climate. Weed Management Society of South Australia, Victoria, Australia

  • Warwick SI (1979) The biology of Canadian weeds. 37. Poa annua L. Can J Plant Sci 59:1053–1066

    Article  Google Scholar 

  • Wilson RS, Tucker MA, Hooker NH, LeJune JT, Doohan D (2008) Perceptions and beliefs about weed management: perspectives of Ohio grain and produce farmers. Weed Technol 22:339–350

    Article  Google Scholar 

  • WRAG (2015) Guidleines for minimizing the risk of glyphosate resistance in the UK. http://webarchive.nationalarchives.gov.uk/20151023155227/http://www.pesticides.gov.uk/Resources/CRD/Migrated-Resources/Documents/W/WRAG_Glyphosate_resistance_guidelines_June_2015.pdf. doi:http://webarchive.nationalarchives.gov.uk/20151023155227/http://www.pesticides.gov.uk/Resources/CRD/Migrated-Resources/Documents/W/WRAG_Glyphosate_resistance_guidelines_June_2015.pdf

  • Yanniccari M, Vila-Aiub M, Istilart C, Acciaresi H, Castro AM (2016) Glyphosate resistance in perennial ryegrass (Lolium perenne L.) is associated with a fitness penalty. Weed Sci 64:71–79

    Article  Google Scholar 

  • Young BG et al. (2013) Agricultural weeds in glyphosate-resistant cropping systems in the United States Weed Sci 61:85–97

Download references

Acknowledgements

This project is supported by INRA, the European project AMIGA (Assessing and Monitoring Impacts of Genetically modified plants on Agro-ecosystems, FP7-KBBE-2011-5-CP-CSA), the French project CoSAC (ANR-14-CE18-0007) and the research programme “Assessing and reducing environmental risks from plant protection products” funded by the French Ministries in charge of Ecology and Agriculture. The authors are grateful to Christian Gauvrit for his expertise on herbicide effects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Colbach.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colbach, N., Fernier, A., Le Corre, V. et al. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds. Environ Sci Pollut Res 24, 11582–11600 (2017). https://doi.org/10.1007/s11356-017-8591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8591-7

Keywords

Navigation