Skip to main content

Green Approaches to Synthesize Organic Compounds and Drugs

  • Chapter
  • First Online:
Applications of Nanotechnology for Green Synthesis

Abstract

Green approach is a novel endeavor of chemistry that attempts to minimize or eliminate the utilization of hazardous substances in chemical reactions. The implementation and adoption of green chemistry has increasingly gained importance as it minimizes risks to the environment and human health, of exposure to chemicals. It also reduces the production expenses due to reduced solvent usage, reduction in disposal expense, and less energy requirement without sacrificing the quality of product. Green chemistry finds application starting from early stages of new drug development to the production at commercial scale. The benefits of the green chemistry are also seen in chemical industry with more or less the same advantages as in pharmaceutical industry. This book chapter elaborates the advances in green chemistry, which finds applications in organic chemistry and pharmaceutical industry and has tremendous potential for growth. Researchers can use this chapter as a guide to implement the green ideas while designing new schemes. The approach has immense potential to design compounds with novel activities while simultaneously allowing for a relatively straightforward synthesis. The progress and advantages about green chemistry are of significant importance for both medicinal chemistry and bulk pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qalaf F, Mekheimer RA, Sadek KU. Cerium (IV) ammonium nitrate (CAN) catalyzed the one-pot synthesis of 2arylbenzothiazoles. Molecules. 2008;13:2908–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anastas PT, Warner J. Green chemistry: theory and practice. Oxford: Oxford University Press; 1988.

    Google Scholar 

  • Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9.

    CAS  PubMed  Google Scholar 

  • Augeri J, Robl A, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han S-P, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG. Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48:5025–37.

    CAS  PubMed  Google Scholar 

  • Balalaie SCC, Abdolmohammadi SC, Bijanzadeh HRC, Amani AMC. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol Divers. 2008;12:85–91. https://doi.org/10.1007/s11030-008-9079-7.

    Article  CAS  PubMed  Google Scholar 

  • Bararjanian MC, Balalaie S, Movassagh BC, Amani AMC. One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-proline in aqueous media. J Iran Chem Soc. 2009;6:436–42.

    CAS  Google Scholar 

  • Baron AC, Martinez JC, Lamaty FC. Solvent-free synthesis of unsaturated amino esters in a ball-mill. Tetrahedron Lett. 2010;5:6246–62.

    Google Scholar 

  • Bhattacharyya S, Fan L, Vo L, Labadie J. Titanium (IV) isopropoxide mediated solution phase reductive amination on an automated platform: application in the generation of urea and amide libraries. Comb Chem High Throughput Screen. 2000;3:117–24.

    CAS  PubMed  Google Scholar 

  • Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS. A simplified green chemistry approach to the Biginelli reaction using ‘grindstone chemistry’. Tetrahedron Lett. 2004;45:8351–3.

    CAS  Google Scholar 

  • Bowles P (Pfizer Inc., USA). Process for preparing aryl piperazinyl-heterocyclic compounds. US Patent 5206366, April 27. 1993.

    Google Scholar 

  • Chemat-Djenni ZC, Hamada BC, Chemat FC. Atmospheric pressure microwave assisted heterogeneous catalytic reactions. Molecules. 2007;12:1399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dayakar C, Mounika L, Rajkumar K, Zehra A, Murthy TR, Kalivendi SV, Tiwari AK, Raju BC. Synthesis of biological activities of nicotinaldehyde based azlactones. Indian J Chem. 2018;57B:98–107.

    CAS  Google Scholar 

  • Devi I, Kumar BSDC, Bhuyan PJC. A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in the solid state. Tetrahedron Lett. 2003;44:8307–10.

    CAS  Google Scholar 

  • Dong YWC, Wang GWC, Wang LC. Solvent-free synthesis of naphthopyrans under ball-milling conditions. Tetrahedron. 2008;64:10148–53.

    CAS  Google Scholar 

  • Dunn PJ, Galvin S, Hettenbach K. The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by green chemistry metrics. Green Chem. 2004;6:43–8.

    CAS  Google Scholar 

  • Dunn P, Wells A, Williams MT. Green chemistry in the pharmaceutical industry. Weinheim/New York/Chichester/West Sussex: Wiley-VCH Verlag; 2010.

    Google Scholar 

  • Earle MJ, Seddon KR, Adams CJ, Roberts G. Friedel–Crafts reactions in room temperature ionic liquids. Chem Commun. 1998;19:2097–9.

    Google Scholar 

  • Elango V, Murhpy MA, Smith, BL, Davenport KG, Mott GN, Zey EG, Moss GL. Method for producing ibuprofen. US Patent 4981995 granted, January 1. 1991.

    Google Scholar 

  • Epps A, Barbas J, Mandouma G. Synthesis of substituted 2, 2′-dinitrobiphenyls by a novel solvent-free high yielding Ullmann coupling biarylation. Int J Innov Educ Res. 2014;2:133–49.

    PubMed  PubMed Central  Google Scholar 

  • Fahmy AF, El-Sayed AA, Hemdan MH. Multicomponent synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones (azlactones) using a mechanochemical approach. Chem Cent J. 2016;10:59. https://doi.org/10.1186/s13065-016-0205-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farsang C. Indications for and utilization of angiotensin receptor II blockers in patients at high cardiovascular risk. Vasc Health Risk Manag. 2011;7:605–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox RJ, Davis CS, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW. Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol. 2007;25:338–44.

    CAS  PubMed  Google Scholar 

  • Gabel MD, Groaning F, Johnston DA. WIPO patent WO 2007/074091, July 5. 2007.

    Google Scholar 

  • Gadamasetti KG. Process chemistry in the pharmaceutical industry. New York: Marcel Dekker; 1999. p. 3–17. https://doi.org/10.1021/jm990629g.

    Book  Google Scholar 

  • Gupta AD, Sepay N, Mallik AK. An efficient microwave-assisted synthesis of 2, 3-dihydroquinazolin-4(1H)-ones by a three component reaction under catalyst-and solvent-free conditions. Eur Chem Bull. 2016;5:185–8.

    Google Scholar 

  • Guzen KP, Guarezemini AS, Orfao ATG, Cella R, Pereira CMP, Stefani HA. Eco-friendly synthesis of imines by ultrasound irradiation. Tetrahedron Lett. 2007;48:1845–8.

    CAS  Google Scholar 

  • Hanson RL, Goldberg SL, Brzozowski DB, Tully TP, Cazzulino D, Parker WL, Lyngberg OK, Vu TC, Wong MK, Patel RN. Preparation of an amino acid intermediate for the dipeptidyl peptidase iv inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. Adv Synth Catal. 2007;349:1369–78.

    CAS  Google Scholar 

  • Herman GA, Stein PP, Thornberry NA, Wagner JA. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: focus on sitagliptin. Clin Pharmacol Ther. 2007;81:761–7.

    CAS  PubMed  Google Scholar 

  • Jagwani D, Joshi P. A greener chemistry approach for the synthesis of 4(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid ethyl ester. Int J Pharm Sci Res. 2015;6:783–90.

    CAS  Google Scholar 

  • Jain S, Pradeep KC, Paliwal GC, Babu NC, Bhatewara AC. DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities. J Saudi Chem Soc. 2011;1:535–40.

    Google Scholar 

  • Jat LR, Mishra R, Pathak D. Synthesis and anticancer activity of 4-benzylidene- 2-phenyl oxazol-5 (4H)-one derivatives. J Pharm Pharm Sci. 2012;4:378–80.

    CAS  Google Scholar 

  • Jennings S (Pfizer). A green process for the synthesis of quinapril hydrochloride: summary for the presidential green chemistry challenge awards program. 2005. Available online at: https://www.epa.gov/sites/production/files/documents/award_entries_and_recipients2005.pdf. Accessed on 01 July 2019.

  • Jiminez-Gonzales C, Curzons AD, Constable DJC, Cunningham VL. Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds: a case-study. Int J Life Cycle Assess. 2004;9:114–21.

    Google Scholar 

  • John L, Tucker M, Faul MM. Industrial research: drug companies must adopt green chemistry. Nature. 2016;534:27–9. https://doi.org/10.1038/534027a.

    Article  CAS  Google Scholar 

  • Kappe CO, Peiber B, Dallinger DC. Mikrowelleneffekte in der organischen Synthese – Mythos oder Wirklichkeit? Angew Chem. 2013;52:1124–30. https://doi.org/10.1002/ange.201204103.

    Article  Google Scholar 

  • Kazemi M, Kohzadi H, Abdi M. Alkylation of thiols in green mediums. J Mater Environ Sci. 2015;6:1451–4.

    CAS  Google Scholar 

  • Khurana JM. Sonochemistry. Chem Educ. 1990; 70:24–29.

    Google Scholar 

  • Kidwai M. Dry media reactions. Pure Appl Chem. 2001;73:147–51.

    CAS  Google Scholar 

  • Koenig SG. Scalable green chemistry, case studies from the pharmaceutical industry. Boca Raton: Taylor & Francis Group, CRC Press; 2013.

    Google Scholar 

  • Kompella A, Adibhatla BRK, Muddasani PR, Rachakonda S, Gampa VK, Dubey PK. A facile total synthesis for large-scale production of imatinib base. Org Process Res Dev. 2012;16:1794–804.

    CAS  Google Scholar 

  • Kua YL, Gan S, Morris A, Kiat H. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain Chem Pharm. 2016;4:21–31.

    CAS  Google Scholar 

  • Lauria-Horner BA, Pohl RB. Pregabalin: a new anxiolytic. Expert Opin Investig Drugs. 2003;12:663–72.

    CAS  PubMed  Google Scholar 

  • Letendre LJ, Snoddy C, Klemm GH, McGhee W (Pfizer). Green chemistry in the redesign of the celecoxib process. Summary for the presidential green chemistry challenge awards program. 2005. Available online at: https://aiche.confex.com/aiche/2008/techprogram/P134118.HTM. Accessed on 01 July 2019.

  • Ma SK, Gruber J, Davis C, Newmann L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA. A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 2010;12:81–6.

    CAS  Google Scholar 

  • Madje BR, Ubale MB, Bharad JV, Shingare MS. Alum an efficient catalyst for Erlenmeyer synthesis. S Afr J Chem. 2010;63:158–61.

    Google Scholar 

  • Mandhare DB, Barhate VD. Development of extractive spectrophotometric method for the determination of iron (III) with schiff base 2-[(2-hydroxyphenylimino) methyl]-4-nitrophenol. Int J Curr Pharm Res. 2016;8:89–91.

    CAS  Google Scholar 

  • Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L. Development of a chemoenzymatic manufacturing process for pregabalin. Org Process Res Dev. 2008;12:392–8.

    CAS  Google Scholar 

  • Mazaahir KC, Ritu GC, Kavita SC. A selective synthesis for novel pyranodipyrimidines. Indian J Chem. 2007;46B:1159–63.

    Google Scholar 

  • Miglani S, Mishra M, Chawla P. The rapid synthesis of schiff bases without solvent under microwave irradiation and their antimicrobial activity. Der Pharm Chem. 2012;4:2265–9.

    CAS  Google Scholar 

  • Mitra S, Ragunath S, Mitra A, Sae KO. Green chemistry in teaching laboratory: microwave-induced reactions. New Jersey’s Science and Technology University, pp 18–19. 2010. Available online at https://web.njit.edu/~mitra/green_chemistry/Content/Manual-april-2010.pdf. Accessed on 03 July 2019.

  • Mobinikhaledi AC, Bodaghi-Fard MAC. Tetrabutylammonium bromide in water as a green media for the synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives. Acta Chim Slov. 2010;57:931–5.

    CAS  PubMed  Google Scholar 

  • Mobinikhaledi AC, Foroughifar NC, Bodaghi-Fard MAC. Eco-friendly and efficient synthesis of pyrano[2,3-d] pyrimidinone and tetrahydrobenzo[b]pyran derivatives in water. Synth React Inorg Met-Org Metal Org Nano-Met Chem. 2010;40:179–85.

    CAS  Google Scholar 

  • Modarresi-Alam AR, Nasrollahzadeh M, Khamooshi F. Solvent free preparation of primary carbamates using silica sulfuric acid as an efficient reagent. ARKIVOC: Arch Org Chem. 2007;16:238–45. https://doi.org/10.3998/ark.5550190.0008.g23.

    Article  Google Scholar 

  • Mohammadi-Ziarani G, Faramarzi S, Asadi S, Badiei A, Bazl R, Amanlou M. Three-component synthesis of pyrano [2, 3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO 3 H) and their docking and urease inhibitory. DARU J Pharm Sci. 2013;21:1–3.

    Google Scholar 

  • Mohan PC, Rao JV. Biological evaluation of schiff bases of new isatin derivatives for anti Alzheimer’s activity. Asian J Pharm Clin Res. 2014;7:114–7.

    Google Scholar 

  • Murti Y, Mishra P. Expeditious synthesis and evaluation of heterocyclic chalcones and flavanones as anticancer agents. Indian J Heterocycl Chem. 2016;26:113–20.

    CAS  Google Scholar 

  • Murti Y, Mishra P. Synthesis, characterization, and biological evaluation of novel naringenin derivatives as anticancer agents. Curr Bioact Compd. 2019;15:1–6. https://doi.org/10.2174/1573407215666181214114927.

    Article  Google Scholar 

  • Pandarus V, Desplantier-Giscard D, Gingras G, Béland F, Ciriminna R, Pagliaro M. SiliaCat: a versatile catalyst series for synthetic organic chemistry. Org Process Res Dev. 2013;17:1492–7.

    CAS  Google Scholar 

  • Pathak P, Meziani MJ, Desai T, Sun YPJ. Nanosizing drug particles in supercritical fluid processing. Am Chem Soc. 2004;126:10842–3.

    CAS  Google Scholar 

  • Patil SB. Biological and medicinal significance of pyrimidines: a review. Int J Pharm Sci Res. 2018;9:44–52.

    CAS  Google Scholar 

  • Perron-Sierra FM, Pierre A, Burbridge M, Guilband N. Novel bicyclic oxazolone derivatives as anti-angiogenic agents. Bioorg Med Chem Lett. 2002;12:1463–6.

    CAS  PubMed  Google Scholar 

  • Ressmann AK, Gaertner P, Bica K. From plant to drug: ionic liquids for the reactive dissolution of biomass. Green Chem. 2011;13:1442–7.

    CAS  Google Scholar 

  • Rothenberg G, Downie AP, Raston CL, Scott JT. Understanding solid/solid organic reactions. J Am Chem Soc. 2001;123(36):8701–8.

    CAS  PubMed  Google Scholar 

  • Saikia L, Baruah JM, Thakur AJ. A rapid, convenient, solvent less green approach for the synthesis of oximes using grindstone chemistry. Org Med Chem Lett. 2011;1:12. https://doi.org/10.1186/2191-2858-1-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgin-Goksen U, Gokhan-Kelekci N, Goktas O, Koysal Y, Kilic E, Isik S, Aktay G, Ozalp M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis analgesic-anti-inflammatory and antimicrobial activities. Bioorg Med Chem. 2007;15(17):5738–51.

    PubMed  Google Scholar 

  • Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 2010;329:305–9. https://doi.org/10.1126/science.1188934.

    Article  CAS  PubMed  Google Scholar 

  • Sharma GK, Pathak D. Microwave-assisted, solvent-free and parallel synthesis of some novel substituted imidazoles of biological interest. Chem Pharm Bull. 2010;58(3):375–80.

    CAS  PubMed  Google Scholar 

  • Simon M-O, Li C-J. Green chemistry oriented organic synthesis in water. Green Chem. 2012;12:1415–27.

    Google Scholar 

  • Singh AK, Weaver RE, Powers GL, Rosso VW, Wei C, Lust DA, Kotnis AS, Comoezoglu ET, Liu M, Bembenek KS, Phan BD, Vanyo DJ, Davies ML, Mathew RJ, Palaniswamy VA, Li W-S, Gadamasetti K, Spagnuolo CJ, Winter WJ. Trifluoroacetic acid-mediated cleavage of a triethylsilyl protecting group: application in the final step of the semisynthetic route to paclitaxel (Taxol). Org Process Res Dev. 2003;7:25–7.

    CAS  Google Scholar 

  • Subramaniam B, Saim S, Rajewski R, Stella VJ. ACS symposium series 2001. Green engineering, pp 96–110. 2001.

    Google Scholar 

  • Sung FL, Poon TCW, Hui EP, Ma BBY, Liong E, To KF, Huang DPWS, Chan AT. Antitumor effect and enhancement of cytotoxic drug activity by cetuximab in nasopharyngeal carcinoma cells. In Vivo. 2005;19:237–45.

    CAS  PubMed  Google Scholar 

  • Taber GP, Pfisterer DM, Colbeg JC. A new and simplified process for preparing N-[4(3,4dichlorophenyl)-3,4-dihydro-1(2H)-naphthalenylidene]methanamine and a telescoped process for the synthesis of (1S-cis)-4-(3,4-dichlorophenol)-1,2,3,4-tetrahydro-N-methyl1-naphthalenamine mandelate: key intermediates in the synthesis of sertraline hydrochloride. Org Process Res Dev. 2004;8:385–8.

    CAS  Google Scholar 

  • Tanaka K. Solvent-free organic synthesis. Weinheim: Wiley-VCH; 2003. https://doi.org/10.1021/op034052v.

    Book  Google Scholar 

  • Tanaka K, Toda F. Solvent-free organic synthesis. Chem Rev. 2008;100:1025–74.

    Google Scholar 

  • Tang SLY, Smith RL, Poliakoff M. Principles of green chemistry: productively. Green Chem. 2005;7:761–2.

    Google Scholar 

  • Tang S, Bourne R, Smith R, Poliakoff M. The 24 principles of green engineering and green chemistry: “improvements productively”. Green Chem. 2008;10:268–9.

    CAS  Google Scholar 

  • Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. In: Toda F. (eds) Organic solid state reactions. Topics in Current Chemistry. 2015; 254:41–70, Springer, Berlin, Heidelberg.

    Google Scholar 

  • Trost BM. On inventing reactions for atom economy. Acc Chem Res. 2002;35:695–705.

    CAS  PubMed  Google Scholar 

  • Wang J. Real-time electrochemical monitoring: toward green analytical chemistry. Acc Chem Res. 2002;35:811–6.

    CAS  PubMed  Google Scholar 

  • Wang L, Shen J, Tang Y, Chen Y, Wang W, Cai Z, Du Z. Synthetic improvements in the preparation of clopidogrel. Org Process Res Dev. 2007;11:487–9.

    CAS  Google Scholar 

  • Wardencki W, Curylo J, Namiesnic J. Green chemistry – current and future. Pol J Environ Stud. 2005;14:389–95.

    CAS  Google Scholar 

  • Wasserscheid P, Welton T. Ionic liquids in synthesis. Weinheim: Wiley-VCH; 2002. https://doi.org/10.1002/9783527621194.

    Book  Google Scholar 

  • Webb PB, Kunene TE, Cole-Hamilton DJ. Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem. 2005;7:373–9.

    CAS  Google Scholar 

  • Witvrouw M, Pannecouque C, Clercq E, Fernandez-Alvarez E, Marco JL. Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives. Arch Pharm Pharm Med Chem. 1999;332:163–6.

    CAS  Google Scholar 

  • www.epa.gov/greenchemistry. Accessed on 10 July 2019.

  • www.epa.gov/greenchemistry/green-chemistry-challenge-2019-greener-synthetic-pathways-award. Accessed on 10 July 2019.

  • Xie X, Tang Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol. 2007;73:2054–60. https://doi.org/10.1128/AEM.02820-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JC, Wang HC. Green synthesis of pyrano[2,3-d]-pyrimidine derivatives in ionic liquids. Synth Commun. 2005;35:3133–40.

    CAS  Google Scholar 

  • Zhang TY. In: Clark J, Macquarrie D, editors. Waste minimization in pharmaceutical process development: principles, practice and challenges in handbook of green chemistry and technology. Oxford: Blackwell Science; 2002. p. 306–20.

    Google Scholar 

  • Zhong J-J. Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng. 2002;94:591–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murti, Y., Pathak, D., Pathak, K. (2020). Green Approaches to Synthesize Organic Compounds and Drugs. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_8

Download citation

Publish with us

Policies and ethics