Skip to main content

GCA-\(\mathcal {H}^2\) Matrix Compression for Electrostatic Simulations

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering (SCEE 2018)

Part of the book series: Mathematics in Industry ((TECMI,volume 32))

  • 409 Accesses

Abstract

We consider a compression method for boundary element matrices arising in the context of the computation of electrostatic fields. Green cross approximation combines an analytic approximation of the kernel function based on Green’s representation formula and quadrature with an algebraic cross approximation scheme in order to obtain both the robustness of analytic methods and the efficiency of algebraic ones. One particularly attractive property of the new method is that it is well-suited for acceleration via general-purpose graphics processors (GPUs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  3. Börm, S.: Efficient numerical methods for non-local operators: \({\mathcal H}^2\)-matrix compression, algorithms and analysis. In: EMS Tracts in Mathematics, vol. 14. European Mathematical Society, Zürich (2010)

    Google Scholar 

  4. Börm, S., Christophersen, S.: Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2016)

    Article  MathSciNet  Google Scholar 

  5. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)

    Article  MathSciNet  Google Scholar 

  6. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)

    Article  MathSciNet  Google Scholar 

  7. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive \({\mathcal {H}}^2\)-matrices. Computing 69, 1–35 (2002)

    Article  MathSciNet  Google Scholar 

  8. Börm, S., Löhndorf, M., Melenk, J.M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM J. Matrix Anal. Appl. 15(2), 592–622 (1994)

    Article  MathSciNet  Google Scholar 

  10. Gimbutas, Z., Rokhlin, V.: A generalized fast multipole method for nonoscillatory kernels. SIAM J. Sci. Comput. 24(3), 796–817 (2002)

    Article  MathSciNet  Google Scholar 

  11. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica 1997, pp. 229–269. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MathSciNet  Google Scholar 

  13. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \(\mathcal {H}^2\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

    Chapter  Google Scholar 

  14. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comp. Phys. 60, 187–207 (1985)

    Article  MathSciNet  Google Scholar 

  15. Sauter, S.A.: Cubature techniques for 3-d Galerkin BEM. In: Hackbusch, W., Wittum, G. (eds.) Boundary Elements: Implementation and Analysis of Advanced Algorithms, pp. 29–44. Vieweg-Verlag, Wiesbaden (1996)

    Chapter  Google Scholar 

  16. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, New York (2011)

    Book  Google Scholar 

  17. Tyrtyshnikov, E.E.: Mosaic-skeleton approximation. Calcolo 33, 47–57 (1996)

    Article  MathSciNet  Google Scholar 

  18. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comp. Phys. 196(2), 591–626 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steffen Börm or Sven Christophersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Börm, S., Christophersen, S. (2020). GCA-\(\mathcal {H}^2\) Matrix Compression for Electrostatic Simulations. In: Nicosia, G., Romano, V. (eds) Scientific Computing in Electrical Engineering. SCEE 2018. Mathematics in Industry(), vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44101-2_20

Download citation

Publish with us

Policies and ethics