Skip to main content
Log in

Approximation of integral operators by Green quadrature and nested cross approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a fast algorithm that constructs a data-sparse approximation of matrices arising in the context of integral equation methods for elliptic partial differential equations. The new algorithm uses Green’s representation formula in combination with quadrature to obtain a first approximation of the kernel function, and then applies nested cross approximation to obtain a more efficient representation. The resulting \({\mathcal H}^2\)-matrix representation requires \({\mathcal O}(n k)\) units of storage for an \(n\times n\) matrix, where k depends on the prescribed accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13, 923–947 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bebendorf, M., Venn, R.: Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121(4), 609–635 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Börm, S.: Efficient numerical methods for non-local operators: \({\cal {H}}^2\)-matrix compression, algorithms and analysis. EMS Tracts Math. 14, (2010). doi:10.4171/091

  7. Börm, S., Gördes, J.: Low-rank approximation of integral operators by using the Green formula and quadrature. Numer. Algorithms 64(3), 567–592 (2013). doi:10.1007/s11075-012-9679-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005). doi:10.1007/s00211-005-0618-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical Matrices. Lecture Note 21 of the Max Planck Institute for Mathematics in the Sciences (2003)

  10. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive \({\cal {H}}^2\)-matrices. Computing 69, 1–35 (2002). doi:10.1007/s00607-002-1450-4

  11. Börm, S., Hackbusch, W.: \({\cal {H}}^2\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandt, A.: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Commun. 65(1–3), 24–38 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandt, A., Lubrecht, A.A.: Multilevel matrix multiplication and fast solution of integral equations. J. Comput. Phys. 90, 348–370 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations I: stability and convergence. Math. Z. 215, 583–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal {H}}\)-matrices. Computing 70, 295–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hackbusch, W.: Elliptic Differential Equations. Theory and Numerical Treatment. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  21. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal {H}}\)-matrices. Part I: introduction to \({\cal {H}}\)-matrices. Computing 62, 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, New York (2009)

  23. Hackbusch, W., Khoromskij, B.N.: A sparse matrix arithmetic based on \({\cal {H}}\)-matrices. Part II: application to multi-dimensional problems. Computing 64, 21–47 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations: implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. No. 164 in Appl. Math. Sci. Springer, New York (2008)

    Book  Google Scholar 

  27. Maaskant, R., Mittra, R., Tijhuis, A.: Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans. Antennas Propag. 56(11), 3440–3451 (2008)

    Article  Google Scholar 

  28. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sauter, S.A.: Cubature techniques for 3-d Galerkin BEM. In: Hackbusch, W., Wittum, G. (eds.) Boundary Elements: Implementation and Analysis of Advanced Algorithms, pp. 29–44. Vieweg-Verlag, Berlin (1996)

    Chapter  Google Scholar 

  30. Sauter, S.A., Schwab, C.: Randelementmethoden. Teubner, Berlin (2004)

    Book  Google Scholar 

  31. Schöberl, J.: NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  MATH  Google Scholar 

  32. Tamayo, J.M., Heldring, A., Rius, J.M.: Multilevel adaptive cross approximation. IEEE Trans. Antennas Propag. 59(12), 4600–4608 (2011)

    Article  MathSciNet  Google Scholar 

  33. Tyrtyshnikov, E.E.: Mosaic-skeleton approximation. Calcolo 33, 47–57 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tyrtyshnikov, E.E.: Incomplete cross approximation in the mosaic-skeleton method. Computing 64, 367–380 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Börm.

Additional information

Part of this research was funded by DFG Grant BO 3289/2-1.

Appendix A: Proofs of technical lemmas

Appendix A: Proofs of technical lemmas

Proof of Lemma 3

By definition of the maximum norm, we can find \(\iota \in \{1,\ldots ,d\}\) such that \(2\delta _t = \mathop {\mathrm{diam}}\nolimits _\infty ({\mathcal B}_t) = b_{t,\iota }-a_{t,\iota }\) and \(b_{t,\kappa }-a_{t,\kappa }\le 2\delta _t\) holds for all \(\kappa \in \{1,\ldots ,d\}\). Most of our claims are direct consequences of this estimate, only the last claim of (16) requires a closer look. Let \(x\in \partial \omega _t\) and \(y\in {\mathcal F}_t\) be given with

$$\begin{aligned} \Vert x-y\Vert _\infty = \mathop {\mathrm{dist}}\nolimits _\infty (\partial \omega _t, {\mathcal F}_t). \end{aligned}$$

Let \(\widehat{x}\in {\mathcal B}_t\) be a point in \({\mathcal B}_t\) that has minimal distance to x. By construction, we have

$$\begin{aligned} \Vert x-\widehat{x}\Vert _\infty \le \delta _t, \end{aligned}$$

and the triangle inequality in combination with (5) yields

$$\begin{aligned} \mathop {\mathrm{dist}}\nolimits _\infty (\partial \omega _t, {\mathcal F}_t)&= \Vert x-y\Vert _\infty \ge \Vert \widehat{x}-y\Vert _\infty - \Vert \widehat{x}-x\Vert _\infty \ge \mathop {\mathrm{dist}}\nolimits _\infty ({\mathcal B}_t, B_s) - \delta _t\\&\ge \mathop {\mathrm{diam}}\nolimits _\infty ({\mathcal B}_t) - \mathop {\mathrm{diam}}\nolimits _\infty ({\mathcal B}_t)/2 = \mathop {\mathrm{diam}}\nolimits _\infty ({\mathcal B}_t)/2 = \delta _t, \end{aligned}$$

and this is the required estimate. \(\square \)

Proof of Lemma 4

Let \(\kappa \in {\mathbb {N}}_0^d\) be a multiindex. We consider the function

$$\begin{aligned} g_x : [-1,1]^d&\rightarrow {\mathbb {R}},&{\hat{z}}&\mapsto (\partial ^\kappa g)(x,\Phi _t({\hat{z}})) \end{aligned}$$

and aim to prove

$$\begin{aligned} \partial ^\nu g_x({\hat{z}})&= s^\nu (\partial ^{\nu +\kappa } g)(x,\Phi _t({\hat{z}}))&\text { for all } {\hat{z}}\in [-1,1]^d,\ \nu \in {\mathbb {N}}_0^d \end{aligned}$$
(31)

with the vector

$$\begin{aligned} s := \begin{pmatrix} (b_{t,1}-a_{t,1}+2\delta _t)/2\\ \vdots \\ (b_{t,d}-a_{t,d}+2\delta _t)/2 \end{pmatrix} \in {\mathbb {R}}^d. \end{aligned}$$

We proceed by induction: for the multiindex \(\nu =0\), the identity (31) is trivial.

Let \(m\in {\mathbb {N}}_0\) and assume that (31) has been proven for all multiindices \(\nu \in {\mathbb {N}}_0^d\) with \(|\nu |\le m\). Let \(\nu \in {\mathbb {N}}_0^d\) be a multiindex with \(|\nu |=m+1\). Then we can find \(\mu \in {\mathbb {N}}_0^d\) with \(|\mu |=m\) and \(i\in \{1,\ldots ,d\}\) such that \(\nu =(\mu _1,\ldots ,\mu _{i-1},\mu _i+1,\mu _{i+1},\ldots ,\mu _d)\). This implies

$$\begin{aligned} \partial ^\nu g_x({\hat{z}})&= \frac{\partial }{\partial {\hat{z}}_i} (\partial ^{\mu +\kappa } g_x)({\hat{z}})&\text { for all } {\hat{z}}\in [-1,1]^d. \end{aligned}$$

Applying the induction assumption and the chain rule yields

$$\begin{aligned} \partial ^\nu g_x({\hat{z}})&= \frac{\partial }{\partial {\hat{z}}_i} \partial ^\mu g_x({\hat{z}}) = \frac{\partial }{\partial {\hat{z}}_i} s^\mu (\partial ^{\mu +\kappa } g)(x,\Phi _t({\hat{z}}))\\&= s^\mu \frac{b_{t,i}-a_{t,i}+2\delta _t}{2} \left( \frac{\partial }{\partial {\hat{z}}_i} \partial ^{\mu +\kappa } g\right) (x,\Phi _t({\hat{z}}))\\&= s^\nu (\partial ^{\nu +\kappa } g)(x,\Phi _t({\hat{z}})) \qquad \text { for all } {\hat{z}}\in [-1,1]^d \end{aligned}$$

since \(D\Phi _t\) is a diagonal matrix due to (6). The induction is complete.

By definition (7), we have

$$\begin{aligned} \gamma _\iota ({\hat{z}})&= \Phi _t({\hat{z}}_1,\ldots ,{\hat{z}}_{\lceil \iota /2 \rceil -1}, \pm 1, {\hat{z}}_{\lceil \iota /2 \rceil }, \ldots , {\hat{z}}_{d-1}), \end{aligned}$$

therefore (31) implies

$$\begin{aligned} \partial ^{\hat{\nu }} {\hat{f}}_1({\hat{z}})&= s^\nu (\partial _y^\nu g)(x,\gamma _\iota ({\hat{z}}))&\text { for all } {\hat{z}}\in Q,\ \hat{\nu }\in {\mathbb {N}}_0^{d-1} \end{aligned}$$
(32a)

with

$$\begin{aligned} \nu := (\hat{\nu }_1, \ldots , \hat{\nu }_{\lceil \iota /2\rceil -1}, 0, \hat{\nu }_{\lceil \iota /2\rceil }, \ldots , \hat{\nu }_{d-1}). \end{aligned}$$

The exterior normal vector on the surface \(\gamma _\iota (Q)\) is the \(\iota /2\)th canonical unit vector if \(\iota \) is even and the negative \((\iota +1)/2\)th canonical unit vector if it is uneven, so we obtain also

$$\begin{aligned} \partial ^{\hat{\nu }} {\hat{g}}_2({\hat{z}})&= \pm s^\nu (\partial _y^{\nu +\kappa } g)(x,\gamma _\iota ({\hat{z}}))&\text { for all } {\hat{z}}\in Q,\ \hat{\nu }\in {\mathbb {N}}_0^{d-1}, \end{aligned}$$
(32b)

where \(\kappa \) is the \(\lceil \iota /2 \rceil \)th canonical unit vector in \({\mathbb {N}}_0^d\).

Exchanging the roles of x and y in these arguments yields

$$\begin{aligned} \partial ^{\hat{\nu }} {\hat{f}}_2({\hat{z}})&= s^\nu (\partial _x^\nu g)(\gamma _\iota ({\hat{z}}),y),\end{aligned}$$
(32c)
$$\begin{aligned} \partial ^{\hat{\nu }} {\hat{g}}_1({\hat{z}})&= \pm s^\nu (\partial _x^{\nu +\kappa } g)(\gamma _\iota ({\hat{z}}),y)&\text { for all } {\hat{z}}\in Q,\ \hat{\nu }\in {\mathbb {N}}_0^{d-1}. \end{aligned}$$
(32d)

Now we only have to combine the equations (32) with

$$\begin{aligned} |s^\nu |&\le (2\delta _t)^{|\nu |} \qquad \text { for all } \nu \in {\mathbb {N}}_0^d \end{aligned}$$

and the asymptotic smoothness (15) to obtain

$$\begin{aligned} |\partial ^{\hat{\nu }} {\hat{f}}_1({\hat{z}})|&\le (2\delta _t)^{|\hat{\nu }|} C_\mathrm{as} \hat{\nu }! \frac{c_0^{|\hat{\nu }|}}{\Vert x-\gamma _\iota ({\hat{z}})\Vert ^{\sigma +|\hat{\nu }|}}\\&\le \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^\sigma } \left( \frac{2 \delta _t c_0}{\delta _t} \right) ^{|\hat{\nu }|} = \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^\sigma } (2 c_0)^{|\hat{\nu }|},\\ |\partial ^{\hat{\nu }} {\hat{f}}_2({\hat{z}})|&\le (2\delta _t)^{|\hat{\nu }|} C_\mathrm{as} \hat{\nu }! \frac{c_0^{|\hat{\nu }|}}{\Vert \gamma _\iota ({\hat{z}})-y\Vert ^{\sigma +|\hat{\nu }|}}\\&\le \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^\sigma } \left( \frac{2 \delta _t c_0}{\delta _t} \right) ^{|\hat{\nu }|} = \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^\sigma } (2 c_0)^{|\hat{\nu }|},\\ |\partial ^{\hat{\nu }} {\hat{g}}_1({\hat{z}})|&\le (2\delta _t)^{|\hat{\nu }|} C_\mathrm{as} \hat{\nu }! \frac{c_0^{|\hat{\nu }|+1}}{\Vert x-\gamma _\iota ({\hat{z}})\Vert ^{\sigma +1+|\hat{\nu }|}}\\&\le \frac{C_\mathrm{as} c_0 \hat{\nu }!}{\delta _t^{\sigma +1}} \left( \frac{2 \delta _t c_0}{\delta _t} \right) ^{|\hat{\nu }|} = \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^{\sigma +1}} (2 c_0)^{|\hat{\nu }|},\\ |\partial ^{\hat{\nu }} {\hat{g}}_2({\hat{z}})|&\le (2\delta _t)^{|\hat{\nu }|} C_\mathrm{as} \hat{\nu }! \frac{c_0^{|\hat{\nu }|+1}}{\Vert \gamma _\iota ({\hat{z}})-y\Vert ^{\sigma +1+|\hat{\nu }|}}\\&\le \frac{C_\mathrm{as} c_0 \hat{\nu }!}{\delta _t^{\sigma +1}} \left( \frac{2 \delta _t c_0}{\delta _t} \right) ^{|\hat{\nu }|} = \frac{C_\mathrm{as} \hat{\nu }!}{\delta _t^{\sigma +1}} (2 c_0)^{|\hat{\nu }|}, \end{aligned}$$

where Lemma 3 provides the lower bounds \(\delta _t\le \Vert x-\gamma _\iota ({\hat{z}})\Vert \) and \(\delta _t\le \Vert \gamma _\iota ({\hat{z}})-y\Vert \) and we have taken advantage of \((\nu +\kappa )!=\nu !=\hat{\nu }!\) due to \(\nu _{\lceil \iota /2\rceil }=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börm, S., Christophersen, S. Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133, 409–442 (2016). https://doi.org/10.1007/s00211-015-0757-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0757-y

Mathematics Subject Classification

Navigation