Skip to main content

Imaging Aqueous Outflow

  • Chapter
  • First Online:
Advances in Ocular Imaging in Glaucoma

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 400 Accesses

Abstract

Imaging aqueous outflow is paramount to our understanding of normal ocular function and homeostasis, but presents a number of technical challenges. The minuscule rate of production and outflow (about 2.5 μL/min) of the transparent colorless aqueous humor, the microscopic caliber of outflow pores and channels, and the light-scattering properties of limbal tissue complicate effective imaging. The techniques in this chapter summarize the best methods of their time, going back nearly 200 years, which led to the discovery of Schlemm’s canal and downstream outflow tract structures. We discuss their high-definition, three-dimensional reconstruction and quantification of total as well as focal outflow. A better understanding of structure and resulting function, both through in vivo experiments and flow simulation, is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nau CB, Malihi M, McLaren JW, Hodge DO, Sit AJ. Circadian variation of aqueous humor dynamics in older healthy adults. Invest Ophthalmol Vis Sci. 2013;54(12):7623–9.

    PubMed  PubMed Central  Google Scholar 

  2. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol. 1963;69:783–801.

    Article  CAS  PubMed  Google Scholar 

  3. Mäepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54(6):879–83.

    Article  PubMed  Google Scholar 

  4. Dang Y, Waxman S, Wang C, et al. Rapid learning curve assessment in an ex vivo training system for microincisional glaucoma surgery. Sci Rep. 2017;7(1):1605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang C, Dang Y, Waxman S, Xia X, Weinreb RN, Loewen NA. Angle stability and outflow in dual blade ab interno trabeculectomy with active versus passive chamber management. PLoS One. 2017;12(5):e0177238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Parikh HA, Loewen RT, Roy P, Schuman JS, Lathrop KL, Loewen NA. Differential canalograms detect outflow changes from trabecular micro-bypass stents and Ab Interno trabeculectomy. Sci Rep. 2016;6:34705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loewen RT, Brown EN, Scott G, Parikh H, Schuman JS, Loewen NA. Quantification of focal outflow enhancement using differential canalograms. Invest Ophthalmol Vis Sci. 2016;57(6):2831–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dang Y, Wang C, Shah P, et al. Outflow enhancement by three different ab interno trabeculectomy procedures in a porcine anterior segment model. Graefes Arch Clin Exp Ophthalmol. 2018; https://doi.org/10.1007/s00417-018-3990-0.

  9. Bussel II, Kaplowitz K, Schuman JS, Loewen NA, Trabectome Study Group. Outcomes of ab interno trabeculectomy with the trabectome by degree of angle opening. Br J Ophthalmol. 2015;99(7):914–9.

    Article  CAS  PubMed  Google Scholar 

  10. Loewen RT, Roy P, Parikh HA, Dang Y, Schuman JS, Loewen NA. Impact of a glaucoma severity index on results of trabectome surgery: larger pressure reduction in more severe glaucoma. PLoS One. 2016;11(3):e0151926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bussel II, Kaplowitz K, Schuman JS, Loewen NA, Trabectome Study Group. Outcomes of ab interno trabeculectomy with the trabectome after failed trabeculectomy. Br J Ophthalmol. 2014; https://doi.org/10.1136/bjophthalmol-2013-304717.

  12. Parikh HA, Bussel II, Schuman JS, Brown EN, Loewen NA. Coarsened exact matching of phaco-trabectome to trabectome in Phakic patients: lack of additional pressure reduction from phacoemulsification. PLoS One. 2016;11(2):e0149384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pajic B, Pajic-Eggspuehler B, Haefliger I. New minimally invasive, deep sclerotomy ab interno surgical procedure for glaucoma, six years of follow-up. J Glaucoma. 2011;20(2):109–14.

    Article  PubMed  Google Scholar 

  14. Singh D, Bundela R, Agarwal A, Bist HK, Satsangi SK. Goniotomy ab interno “a glaucoma filtering surgery” using the Fugo plasma blade. Ann Ophthalmol. 2006;38(3):213–7.

    Article  Google Scholar 

  15. Pajic B, Pajic-Eggspuehler B, Haefliger I, Hafezi F. Long-term results of a novel minimally invasive high-frequency deep Sclerotomy Ab Interno surgical procedure for glaucoma. Eur Ophthal Rev. 2012;6(1):3–6.

    Article  Google Scholar 

  16. Schlemm F. Bulbus oculi. In: Rust JN, editor. Theoretisch-Praktisches Handbuch Der Chirurgie: Mit Einschluss Der Syphilitischen Und Augen-Krankheiten; in Alphabetischer Ordnung, vol. 3. Chir. 264. Berlin: Enslin; 1830. p. 332–8.

    Google Scholar 

  17. Teichmann-Stawiarski LK. Das Saugadersystem Vom Anatomischen Standpunkte, vol. 4 Anat. 190 c. Leipzig: Engelmann; 1861.

    Google Scholar 

  18. Schwalbe G. Untersuchungen über die Lymphbahnen des Auges und ihre Begrenzungen. Arch Mikrosk Anat. 1870;6(1):261–362.

    Article  Google Scholar 

  19. Leber T. Studien über den Flüssigkeitswechsel im Auge. Albrecht von Graefes Archiv für Ophthalmologie. 1873;19(2):87–185.

    Article  Google Scholar 

  20. Kizhatil K, Ryan M, Marchant JK, Henrich S, John SWM. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 2014;12(7):e1001912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Aspelund A, Tammela T, Antila S, et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J Clin Invest. 2014;124(9):3975–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park D-Y, Lee J, Park I, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest. 2014;124(9):3960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rochon-Duvigneaud A. Recherches anatomique sur l’angle de la chambre antérieure et le canal de Schlemm. Arch Ophthalmol. 1892;12:732–44.

    Google Scholar 

  24. Leber T. Der Circulus venosus Schlemmii stehtnicht in offener Verbindung mit der vorderen Augenkammer. Graefe’s Arhiv für Ophthalmologie. 1895;41(1):235–80.

    Article  Google Scholar 

  25. Gutmann G. Ueber die Natur des Schlemm’schen Sinus und seine Beziehungen zur vorderen Augenkammer. Graefe’s Arhiv für Ophthalmologie. 1895;41(1):28–55.

    Article  Google Scholar 

  26. Bentzen CF, Leber T. Über die Filtration aus der vorderen Kammer bei normalen und glaukomatösen Augen. Graefes Arch Clin Exp Ophthalmol. 1895;41(3):208–57.

    Article  Google Scholar 

  27. Leber T. In: Graefe A, Sämisch T, editors. Die Zirkulations- und Ernährungsverhältnisse des Auges, vol. 2. Leipzig: Wilhelm Engelmann; 1903. p. 63.

    Google Scholar 

  28. Seidel E. Weitere experimentelle Untersuchungen über die Quelle und den Verlauf der intraokularen Saftströmung IX. Mitteilung. Über den Abfluß des Kammerwassers aus der vorderen Augenkammer. Albrecht von Graefes Archiv für Ophthalmologie. 1921;104(3–4):357–402.

    Article  Google Scholar 

  29. Seidel E. Weitere experimentelle Untersuchungen über die Quelle und den Verlauf der intraokularen Saftströmung XVII. Mitteilung. Ein weiterer experimenteller Beweis für das Bestehen einer hydrostatischen Druckdifferenz zwischen Vorderkammer und Schlemmschem Kanal bzw. episcleralen Venen im normalen Auge. Albrecht von Graefes Archiv für Ophthalmologie. 1922;108(3–4):420–3.

    Article  Google Scholar 

  30. Stübel A. Über die Lymphgefäße des Auges. Graefes Arhiv für Ophthalmologie. 1922;110(1–2):109–33.

    Article  Google Scholar 

  31. Dvorak-Theobald G. Schlemm’s canal: its anastomoses and anatomic relations. Trans Am Ophthalmol Soc. 1934;32:574–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Graves B. Certain clinical features of the normal limbus. Br J Ophthalmol. 1934;18(6):305–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedenwald JS. Circulation of the aqueous: V. Mechanism of Schlemm’s canal. Arch Ophthalmol. 1936;16(1):65–77.

    Article  Google Scholar 

  34. Loewenstein A. Lipoid droplets in the Episclera as a regular change with age. Ophthalmologica. 1940;100(6):345–50.

    Article  Google Scholar 

  35. Ascher KW. Aqueous Veins. Am J Ophthalmol. 1942;25(11):1301–15.

    Article  Google Scholar 

  36. Ascher KW, Spurgeon WM. Compression tests on aqueous veins of glaucomatous eyes; application of hydrodynamic principles to the problem of intraocular-fluid elimination. Am J Ophthalmol. 1949;32 Pt. 2(6):239–51.

    Article  CAS  PubMed  Google Scholar 

  37. de Vries S. De zichtbare afvoer van het kamerwater, 1947.

    Google Scholar 

  38. Goldmann H. Ueber Abflussdruck und Glasstabphänomen; zur Pathogenese des einfachen Glaukoms. Ophthalmologica. 1948;116(4–5):195–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins. Br J Ophthalmol. 1951;35(5):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loewenstein A. The anterior draining system in the human eye. Ophthalmologica. 1951;122(5):257–82.

    Article  CAS  PubMed  Google Scholar 

  41. Greaves DP, Perkins ES. Aqueous Veins in Rabbits. Br J Ophthalmol. 1951;35(2):119–23. https://doi.org/10.1136/bjo.35.2.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dvorak-Theobald. Further studies on the canal of Schlemm. Am J Ophthalmol. 1955;39(4):65–89. https://doi.org/10.1016/0002-9394(55)90154-9.

    Article  CAS  PubMed  Google Scholar 

  43. Teng CC, Katzin HM, Chi HH. Primary degeneration in the vicinity of the chamber angle∗. Am J Ophthalmol. 1957;43(2):193–203. https://doi.org/10.1016/0002-9394(57)92910-0.

    Article  PubMed  Google Scholar 

  44. Teng CC, Paton RT, Katzin HM. Primary degeneration in the vicinity of the chamber angle∗: as an etiologic factor in wide-angle glaucoma. Am J Ophthalmol. 1955;40(5):619–31.

    Article  CAS  PubMed  Google Scholar 

  45. Cohan BE. Aqueous humor outflow: an experimental study using radiopaque materials. I. Paracentesis technique, response evoked, and demonstration of pathway of outflow. AMA Arch Ophthalmol. 1956;55(6):792–9.

    Article  CAS  PubMed  Google Scholar 

  46. Baltin MM. Roentgenographic study of the drainage of the aqueous from the anterior chamber. Vestn oftalmol. 1945;24:14–9.

    Google Scholar 

  47. Francois J, Neetens A, Collette JM. Microradiographic study of the inner wall of Schlemm’s canal. Am J Ophthalmol. 1955;40(4):491–500.

    Article  CAS  PubMed  Google Scholar 

  48. Cohan BE. Radiography of aqueous humor outflow. AMA Arch Ophthalmol. 1958;60(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  49. Rohen JW, Rentsch FJ. Über den Bau des Schlemmschen Kanals und seiner Abflußwege beim Menschen. Albrecht von Graefes Arch Klin Ophthalmol. 1968;176(4):309–29.

    Article  CAS  Google Scholar 

  50. Morrison JC, Fraunfelder FW, Milne ST, Moore CG. Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci. 1995;36(3):751–6.

    CAS  PubMed  Google Scholar 

  51. Camp JJ, Hann CR, Johnson DH, Tarara JE, Robb RA. Three-dimensional reconstruction of aqueous channels in human trabecular meshwork using light microscopy and confocal microscopy. Scanning. 1997;19(4):258–63.

    Article  CAS  PubMed  Google Scholar 

  52. Johnson M, Johnson DH, Kamm RD, DeKater AW, Epstein DL. The filtration characteristics of the aqueous outflow system. Exp Eye Res. 1990;50(4):407–18.

    Article  CAS  PubMed  Google Scholar 

  53. Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21(5):714–27.

    CAS  PubMed  Google Scholar 

  54. Matsumoto Y, Johnson DH. Trabecular meshwork phagocytosis in glaucomatous eyes. Ophthalmologica. 1997;211:147–52.

    Article  CAS  PubMed  Google Scholar 

  55. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.

    Article  CAS  PubMed  Google Scholar 

  56. Hann CR, Vercnocke AJ, Bentley MD, Jorgensen SM, Fautsch MP. Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures distal outflow pathway at low and high pressure. Invest Ophthalmol Vis Sci. 2014;55(9):5834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alvarado JA, Yun AJ, Murphy CG. Juxtacanalicular tissue in primary open angle glaucoma and in nonglaucomatous normals. Arch Ophthalmol. 1986;104(10):1517–28.

    Article  CAS  PubMed  Google Scholar 

  59. Rohen JW, Futa R, Lutjen-Drecoll E. The fine structure of the cribriform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest Ophthalmol Vis Sci. 1981;21:574–85.

    CAS  PubMed  Google Scholar 

  60. Schuman JS, Chang W, Wang N, de Kater AW, Allingham RR. Excimer laser effects on outflow facility and outflow pathway morphology. Invest Ophthalmol Vis Sci. 1999;40(8):1676–80.

    CAS  PubMed  Google Scholar 

  61. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8(12):1233–40.

    Article  CAS  PubMed  Google Scholar 

  62. Kagemann L, Wollstein G, Ishikawa H, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(8):4054–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kagemann L, Wollstein G, Ishikawa H, et al. 3D visualization of aqueous humor outflow structures in-situ in humans. Exp Eye Res. 2011;93(3):308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Francis AW, Kagemann L, Wollstein G, et al. Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5198–207.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kagemann L, Nevins JE, Jan N-J, et al. Characterisation of Schlemm’s canal cross-sectional area. Br J Ophthalmol. 2014;98 Suppl 2(Suppl 2):ii10–4.

    Article  PubMed  Google Scholar 

  66. Kagemann L, Wang B, Wollstein G, et al. IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci. 2014;55(3):1805–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hann CR, Bentley MD, Vercnocke A, Ritman EL, Fautsch MP. Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res. 2011;92(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez JM Jr, Ko MK, Hong Y-K, Weigert R, Tan JCH. Deep tissue analysis of distal aqueous drainage structures and contractile features. Sci Rep. 2017;7(1):17071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Waxman S, Loewen RT, Dang Y, Watkins SC, Watson AM, Loewen NA. High-resolution, three-dimensional reconstruction of the outflow tract demonstrates segmental differences in cleared eyes. Invest Ophthalmol Vis Sci. 2018;59(6):2371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Waxman S, Wang C, Dang Y, Hong Y. Structure–function changes of the porcine distal outflow tract in response to nitric oxide. Invest Ophthalmol Vis Sci. 2018. https://iovs.arvojournals.org/article.aspx?articleid=2707233.

  71. Gottschalk HM, Wecker T, Khattab MH, et al. Lipid emulsion–based OCT angiography for ex vivo imaging of the aqueous outflow tract. Invest Ophthalmol Vis Sci. 2019;60(1):397–406.

    Article  CAS  PubMed  Google Scholar 

  72. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res. 1996;32(4):654–67.

    Article  CAS  PubMed  Google Scholar 

  73. Wang W, Qian X, Song H, Zhang M, Liu Z. Fluid and structure coupling analysis of the interaction between aqueous humor and iris. Biomed Eng Online. 2016;15(Suppl 2):133.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Loewen RT, Brown EN, Roy P, Schuman JS, Sigal IA, Loewen NA. Regionally discrete aqueous humor outflow quantification using fluorescein canalograms. PLoS One. 2016;11(3):e0151754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Brubaker RF. Measurement with fluorophotometry: I. plasma binding. II. Anterior segment, and III. Aqueous humor flow. Graefes Arch Clin Exp Ophthalmol. 1985;222(4–5):190–3.

    Article  CAS  PubMed  Google Scholar 

  76. Feghali JG, Azar DT, Kaufman PL. Comparative aqueous outflow facility measurements by pneumatonography and Schiotz tonography. Invest Ophthalmol Vis Sci. 1986;27:1776–80.

    CAS  PubMed  Google Scholar 

  77. Kaplowitz K, Schuman JS, Loewen NA. Techniques and outcomes of minimally invasive trabecular ablation and bypass surgery. Br J Ophthalmol. 2014;98(5):579–85.

    Article  PubMed  Google Scholar 

  78. Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 2013;54(2):1450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khare PD, Loewen N, Teo W, et al. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther. 2008;16(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  80. Barraza RA, McLaren JW, Poeschla EM. Prostaglandin pathway gene therapy for sustained reduction of intraocular pressure. Mol Ther. 2010;18(3):491–501.

    Article  CAS  PubMed  Google Scholar 

  81. Wang B, Kagemann L, Schuman JS, et al. Gold nanorods as a contrast agent for Doppler optical coherence tomography. PLoS One. 2014;9(3):e90690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gabriele Sandrian M, Wollstein G, Schuman JS, et al. Inflammatory response to intravitreal injection of gold nanorods. Br J Ophthalmol. 2012;96(12):1522–9.

    Article  PubMed  Google Scholar 

  83. Seidel E. Weitere experimentelle Untersuchungen über die Quelle und den Verlauf der intraokularen Saftströmung VI. Mitteilung. Die Filtrationsfähigkeit, eine wesentliche Eigenschaft der Scleralnarben nach erfolgreicher Elliotscher Trepanation. Albrecht von Graefes Archiv für Ophthalmologie. 1921;104(1–2):158–61.

    Article  Google Scholar 

  84. Spital G. Über das druckherabsetzende Prinzip der Elliotschen Scleraltrepanation beim chronischen Glaukom. Albrecht von Graefes Archiv für Ophthalmologie. 1921;106(1):187–94.

    Article  Google Scholar 

  85. Benedikt O. Demonstration of aqueous outflow patterns of normal and glaucomatous human eyes through the injection of fluorescein solution in the anterior chamber (author’s transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;199(1):45–67.

    Article  CAS  PubMed  Google Scholar 

  86. Huang AS, Li M, Yang D, Wang H, Wang N, Weinreb RN. Aqueous angiography in living nonhuman primates shows segmental, pulsatile, and dynamic angiographic aqueous humor outflow. Ophthalmology. 2017;124(6):793–803.

    Article  PubMed  Google Scholar 

  87. Huang AS, Penteado RC, Saha SK, et al. Fluorescein aqueous angiography in live normal human eyes. J Glaucoma. 2018;27(11):957–64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethical Requirements

Ralitsa T. Loewen, Susannah Waxman, Hirut Kollech, Jonathan Vande Geest, and Nils A. Loewen declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loewen, R.T., Waxman, S., Kollech, H., Vande Geest, J., Loewen, N.A. (2020). Imaging Aqueous Outflow. In: Varma, R., Xu, B.Y., Richter, G.M., Reznik, A. (eds) Advances in Ocular Imaging in Glaucoma. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-43847-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43847-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43846-3

  • Online ISBN: 978-3-030-43847-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics